Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn tập cực trị mũ, logarit vận dụng cao

Tài liệu gồm 38 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tổng hợp toàn tập cực trị mũ, logarit vận dụng cao (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Vận dụng cao cực trị siêu việt (mũ, logarit). + Cực trị siêu việt p1. + Cực trị siêu việt p2. + Cực trị siêu việt p3. + Cực trị siêu việt p4. + Cực trị siêu việt p5. + Cực trị siêu việt p6. + Cực trị siêu việt p7. + Cực trị siêu việt p8. + Cực trị siêu việt p9. + Cực trị siêu việt p10. + Cực trị siêu việt p11. + Cực trị siêu việt p12. + Cực trị siêu việt p13. + Cực trị siêu việt p14. + Cực trị siêu việt p15. + Cực trị siêu việt p16. + Cực trị siêu việt p17. + Cực trị siêu việt p18. + Cực trị siêu việt p19.

Nguồn: toanmath.com

Đọc Sách

Phương pháp nâng lũy thừa trong bài toán phương trình hàm số Logarit - Nguyễn Đình Hoàn
Tài liệu gồm 25 trang giới thiệu phương pháp nâng lũy thừa trong bài toán phương trình hàm số Logarit do tác giả Nguyễn Đình Hoàn biên soạn. Tài liệu gồm 5 ví dụ và 12 bài toán áp dụng có lời giải chi tiết. Cách 1: Nâng lũy thừa không hoàn toàn Cách 2: Nâng lũy thừa hoàn toàn Cách 3: Nâng lũy thừa hoàn toàn kết hợp với ẩn phụ Các ví dụ mẫu được giải chi tiết kèm theo phần bình luận, rút kinh nghiệm sau mỗi bài toán giúp bạn đọc hiểu rõ và biết cách vận dụng hợp lý vào các bài toán khác. [ads]
Các phương pháp giải PT - BPT - HPT Mũ và Logarit - Nguyễn Trung Kiên
Tài liệu Các phương pháp giải phương trình – bất phương trình – hệ phương trình Mũ và Logarit của thầy Nguyễn Trung Kiên gồm 54 trang. Tài liệu tóm gọn các phương pháp giải và một số ví dụ mẫu của PT-BPT-HPT Mũ và Logarit.
Chuyên đề phương trình mũ và logarit - Nguyễn Thành Long
Tài liệu chuyên đề phương trình mũ và logarit của tác giả Nguyễn Thành Long gồm 179 trang, gồm các dạng bài toán phương trình – bất phương trình – hệ phương trình – phương trình chứa tham số mũ và logarit có hướng dẫn và lời giải chi tiết. Các bài toán được phân thành nhiều dạng khác nhau dựa vào phương pháp giải.
Phương trình Mũ và Logarit - Đặng Thành Nam
Phương trình Mũ và Logarit – Đặng Thành Nam.