Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG Toán 7 năm 2022 - 2023 phòng GDĐT Chí Linh - Hải Dương

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Chí Linh – Hải Dương : + Cho tam giác ABC có 3 góc nhọn và AB < AC. Kẻ BE ⊥ AC tại E, CF ⊥ AB tại F, BE cắt CF tại H. Kẻ HQ // AC, HP // AB (Q AB P AC). a) Chứng minh rằng: AHQ = HAP b) Gọi M là trung điểm của BC. Chứng minh tam giác MEF cân và 𝐴𝐸𝐹 = 𝐴𝐵𝐶. c) Chứng minh rằng: HA + HB + HC < 2 3 (AB + AC + BC). + Một trường THCS làm bể tập bơi cho học sinh có dạng hình hộp chữ nhật với chiều dài 15m, chiều rộng 10m, chiều sâu 1,2m. Người ta lát gạch men các mặt xung quanh và đáy của bể (Coi mạch ghép giữa các viên gạch men không đáng kể). a) Tính diện tích gạch men cần dùng để lát bể bơi đó? b) Cần phải bơm bao nhiêu mét khối nước vào bể để mực nước trong bể thấp hơn mép trên của bể là 20cm (Ban đầu bể không có nước)? + Chứng tỏ phân số có dạng n 4 3n 11 là phân số tối giản với mọi số nguyên n.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 150 đề thi học sinh giỏi môn Toán 7 - Hồ Khắc Vũ
Tài liệu gồm 157 trang tuyển tập 150 đề thi chọn học sinh giỏi môn Toán lớp 7 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi học sinh giỏi Toán 7 năm 2016 - 2017 phòng GDĐT Giao Thủy - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi học sinh giỏi Toán 7 năm học 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định : + Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. + Cho các số nguyên dương a; b; c; d; e thỏa mãn: chia hết cho 2. Chứng tỏ rằng: a + b + c + d + e là hợp số. + Cho tỷ lệ thức: a c b d. Chứng minh rằng: 2 3 2 3 2 3 2 3 a b c d a b c d (giả thiết các tỷ lệ thức đều có nghĩa).
Đề thi HSG Toán 7 năm 2016 - 2017 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đáp án và lời giải chi tiết đề thi HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Hoằng Hóa – Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2017.
Đề thi HSG huyện Toán 7 năm 2013 - 2014 phòng GDĐT Việt Yên - Bắc Giang
Đề thi HSG huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Việt Yên – Bắc Giang có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2014.