Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GDĐT Sóc Trăng

giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sóc Trăng; kỳ thi được diễn ra vào ngày 29 và 30 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng : + Với số thực a, xét dãy số (un) xác định bởi. a) Chứng minh rằng với mọi số a hữu tỷ, các số hạng của dãy số (un) luôn xác định. b) Với a thuộc [0;1), chứng minh rằng dãy số (vn) xác định bởi vn = n2un với mọi n = 1; 2; … luôn có giới hạn hữu hạn, tìm giới hạn đó. + Cho bảng ô vuông 12 × 12 được chia thành 144 ô phân biệt. Một hình chữ Z (nằm dọc hoặc nằm ngang, gồm 4 ô vuông) được tạo thành từ bảng 3 × 2 hoặc 2 × 3 cắt bỏ đi hai ô ở góc đối diện như các hình bên dưới. a) Người ta muốn tô màu mỗi ô của bảng 12 × 12 ở trên bởi 2 màu xanh, đỏ sao cho trong mỗi hình chữ Z bất kỳ, luôn có đúng 2 ô xanh và 2 ô đỏ. Chứng minh rằng nếu trên cột 1 có hai ô liên tiếp được tô đỏ thì toàn bộ các ô ở cột 12 đều được tô xanh. b) Tính số cách điền các số từ 1; 2; 3; …; 144 lên bảng và mỗi số điền cho đúng một ô sao cho với mỗi hình chữ Z có trong bảng, số lượng số chẵn bằng số lượng số lẻ. c) Hỏi có tồn tại hay không cách điền số các số từ 1; 2; 3; …; 144 lên bảng, mỗi số điền cho đúng một ô sao cho với mỗi hình chữ Z có trong bảng, tổng các số trên đó đều chia hết cho 3? + Xét tam giác ABC nhọn, không cân có AB < AC nội tiếp trong đường tròn (O) với B, C cố định và A thay đổi trên (O). Các đường cao AD, BE, CF đồng quy tại H. Gọi M là trung điểm của BC. Lấy I đối xứng với A qua EF và đường tròn ngoại tiếp tam giác IMO cắt lại AM tại L. a) Chứng minh rằng L luôn thuộc một đường tròn cố định khi A di động trên (O). b) Đường tròn ngoại tiếp tam giác AHC cắt lại BC tại R, EF cắt BC tại T, AR cắt DE tại G. Chứng minh rằng nếu G là trung điểm của đoạn thẳng DE thì F là trung điểm của đoạn thẳng ET.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi thành phố Toán THPT năm 2022 2023 sở GD ĐT Hải Phòng
Nội dung Đề học sinh giỏi thành phố Toán THPT năm 2022 2023 sở GD ĐT Hải Phòng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi thành phố môn Toán cấp THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; đề thi gồm 02 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Năm ngày 08 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi thành phố Toán THPT năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Gọi A là tập hợp tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập hợp A. Tính xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 4a. Biết hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) là điểm M thỏa mãn AD = 3MD. Trên cạnh CD lấy các điểm I, N sao cho ABM = MBI và MN vuông góc BI. Biết góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 60°. a) Tính thể tích của khối chóp S.AMCB theo a. b) Tính khoảng cách từ điểm N đến mặt phẳng (SBC) theo a. + Trong mặt phẳng tọa độ (Oxy), cho hình thang ABCD có góc BAD = ADC = 90°, D(2;2) và CD = 2AB. Gọi H là hình chiếu vuông góc của điểm D trên đường thẳng AC. Điểm M là trung điểm của đoạn HC. Tìm tọa độ các điểm A, B và C biết rằng đỉnh B thuộc đường thẳng d có phương trình x − 2y + 4 = 0. + Cho ba số thực dương x, y, z thỏa mãn 5(x2 + y2 + z2) = 9(xy + 2yz + zx). Tìm giá trị lớn nhất của biểu thức P.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Khánh Hòa
Nội dung Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Khánh Hòa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Khánh Hòa : + Cho hàm số y = x4 – 2(m + 1)x2 + 2m + 1 có đồ thị (C). a) Với m = 1, tính diện tích của tam giác có 3 đỉnh là 3 điểm cực trị của đồ thị (C). b) Tìm tất cả các giá trị dương của tham số m để đồ thị (Cm) cắt trục hoành tại bốn điểm phân biệt và tiếp tuyến của (Cm) tại giao điểm có hoành độ lớn nhất hợp với hai trục tọa độ một tam giác có diện tích bằng 24. + Bạn An chọn ngẫu nhiên 3 quả cầu từ hộp gồm 19 quả cầu được đánh số thứ tự từ 1 đến 19. Hỏi có bao nhiêu cách chọn sao cho các số thứ tự ghi trên 3 quả cầu có tổng chia hết cho 4. + Biết rằng với mỗi n thuộc N*, luôn tồn tại duy nhất hai số nguyên dương an, bn sao cho. Chứng minh là số chính phương.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Ninh
Nội dung Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Quảng Ninh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Cho tam giác đều ABC. Trên mỗi cạnh AB, BC, CA lần lượt lấy 4 điểm phân biệt và không điểm nào trùng với các đỉnh A, B, C. Hỏi lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập hợp 15 điểm đã cho (tính cả các điểm A, B, C)? + Một người chọn ngẫu nhiên một số điện thoại, trong đó mỗi số có mười chữ số và ba chữ số đầu cố định là 099. Số điện thoại này được gọi là may mắn nếu bốn chữ số tiếp theo là các chữ số chẵn đôi một khác nhau, ba chữ số cuối là các số lẻ và tổng ba chữ số này bằng 9. Tính xác suất để người đó nhận được số điện thoại may mắn. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB 3 BC 6 đường thẳng SA vuông góc với mặt phẳng ABCD. Điểm M thuộc đoạn BC sao cho 1 3 BM BC. Góc giữa đường thẳng SC và mặt phẳng SAB bằng 45°. a) Tính thể tích khối chóp S.ABCD. b) Tính khoảng cách giữa hai đường thẳng SM và AC. c) Gọi H và K lần lượt là hình chiếu vuông góc của A trên SM và SC. Chứng minh hình chóp A.CMHK nội tiếp một mặt cầu. Tính bán kính mặt cầu đó.
Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên
Nội dung Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho hàm số 1 2 2 2024 2023 2022 1 2024 2023 2022 m m y x x x (m là tham số thực). Biện luận theo m số điểm cực trị của hàm số đã cho. + b. Cho phương trình 2 m x x x 2 2 2. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm thực phân biệt. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. SA vuông góc với mặt phẳng (ABCD). AB BC a AD a 2 SA a 3. a. Tính thể tích khối chóp S.ABCD. b. Tính côsin của góc giữa hai mặt phẳng (SBC) và (SCD). c. Gọi M là điểm nằm trên cạnh SA sao cho SM x = (0 3 x a). Mặt phẳng (BCM ) chia hình chóp thành hai phần có thể tích là V1 và V2 (trong đó V1 là thể tích của phần chứa đỉnh S). Tìm x để V V 2 1 2.