Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 10 năm 2023 - 2024 trường THPT Tiên Lãng - Hải Phòng

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 THPT năm học 2023 – 2024 trường THPT Tiên Lãng, thành phố Hải Phòng; kỳ thi được diễn ra vào ngày 20 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 10 năm 2023 – 2024 trường THPT Tiên Lãng – Hải Phòng : + Một chiếc cầu được bắc qua sông. Để trợ lực cho cây cầu, người ta làm một vòm đỡ cong hình parabol. Với hệ trục toạ độ xOh được gắn vào như hình vẽ, biết rằng khoảng cách giữa 2 chân của vòm đỡ là AB m 60. Khoảng cách từ chân cầu (điểm C) tới điểm O là 7m. Tại một điểm cách chân cầu (điểm C) 17m người ta đo được khoảng cách từ mặt cầu xuống vòm đỡ là 5m. Tìm chiều cao tối đa h max của vòm đỡ (khoảng cách từ đỉnh vòm đến đường thẳng AB). + Cột cờ Lũng Cú là một cột cờ quốc gia nằm ở đỉnh Lũng Cú hay còn gọi là đỉnh núi Rồng (Long Sơn) có độ cao khoảng 1.700m so với mực nước biển, thuộc xã Lũng Cú, huyện Đồng Văn, tỉnh Hà Giang, nơi điểm cực Bắc của Việt Nam. Để đo chiều cao của thân tháp cột cờ người ta đứng ở các vị trí A B là hai điểm ở thung lũng dưới núi cách nhau 15m (như hình vẽ) là hai vị trí được chọn để đặt giác kế nhìn đỉnh của thân tháp O và đáy tháp C sao cho bốn điểm ABCO đồng phẳng. Khi tiến hành quan sát người đó đo được các góc CAH CBH 0 (với H là hình chiếu của O trên đường thẳng AB). Tính chiều cao thân tháp cột cờ. + Đêm diễn văn nghệ chào mừng sinh nhật Đoàn 26/03 năm học 2023 – 2024 tại một trường trung học phổ thông X có 15 tiết mục gồm 7 tiết mục múa, 5 tiết mục tốp ca, 3 tiết mục đơn ca. Có bao nhiêu cách sắp xếp thứ tự các tiết mục biểu diễn sao cho tiết mục đầu tiên và tiết mục cuối cùng là tốp ca, đồng thời không có hai tiết mục nào cùng thể loại biểu diễn liên tiếp nhau?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 10 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán 10 cấp tỉnh năm học 2016 – 2017 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 10 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Với giá trị nào của m thì đồ thị hàm số 2 y mx m x m 3 6 cắt trục hoành tại 2 điểm phân biệt có hoành độ 1 x và 2 x thỏa mãn điều kiện 1 2 x x 2 1. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm A 1 3 đường phân giác trong góc A có phương trình xy20 tâm đường tròn ngoại tiếp tam giác ABC là I 3 6. Viết phương trình đường thẳng BC, biết diện tích tam giác ABC gấp 4 lần diện tích tam giác IBC. + Cho tam giác ABC nhọn, không cân nội tiếp đường tròn (O) có đường cao AH H BC và tâm đường tròn nội tiếp là I. Gọi M là điểm chính giữa cung nhỏ BC của (O) và D là điểm đối xứng với A qua O. Đường thẳng MD cắt các đường thẳng BC, AH theo thứ tự tại P và Q. Chứng minh rằng tam giác IPQ vuông.
Đề thi chọn học sinh giỏi tỉnh Toán 10 năm 2015 - 2016 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi tỉnh Toán 10 năm 2015 – 2016 sở GD&ĐT Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 10 năm 2015 – 2016 sở GD&ĐT Hà Tĩnh : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác nhọn ABC có đường cao AH (H ∈ BC) và D, E lần lượt là trung điểm của AB, AC. Gọi F là điểm đối xứng với B qua E. Giả sử F(−3; 3) và đường trung trực của CH có phương trình x − 1 = 0. Tìm tọa độ giao điểm M của các đường thẳng HD, FA. Tìm tọa độ giao điểm N của tia CD với đường tròn ngoại tiếp tam giác ABC (N 6= C), biết đường thẳng đi qua N và tâm đường tròn ngoại tiếp tam giác HCF có phương trình x − 2y − 1 = 0. + Một vùng đất hình chữ nhật ABCD có AB = 25 km, BC = 20 km và M, N lần lượt là trung điểm của AD, BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn MN rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABNM là 15 km/h, vận tốc của ngựa khi đi trên phần MNCD là 30 km/h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất? + Tìm giá trị lớn nhất của số nguyên dương n sao cho tồn tại n tam thức bậc hai khác nhau từng đôi một thỏa mãn đồng thời các điều kiện sau: i) mỗi tam thức bậc hai có hệ số của x 2 bằng 1; ii) tổng của 2 tam thức bậc hai bất kỳ có đúng 1 nghiệm (hai tam thức bậc hai là khác nhau nếu có ít nhất một hệ số tương ứng khác nhau).
Đề thi học sinh giỏi cấp tỉnh Toán 10 năm 2014 - 2015 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi cấp tỉnh Toán 10 năm học 2014 – 2015 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 10 năm 2014 – 2015 sở GD&ĐT Hà Tĩnh : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC. Gọi H K, lần lượt là chân đường cao hạ từ các đỉnh B C, của tam giác ABC. Tìm tọa độ các đỉnh của tam giác ABC biết 1 3 5 1 5 5 H K phương trình đường thẳng BC là x 3 40 y và điểm B có hoành độ âm. + a) Cho tam giác ABC có trọng tâm G. Chứng minh rằng nếu AC là tiếp tuyến của đường tròn ngoại tiếp tam giác GAB thì 22 2 cos cos 2cos A C B. b) Cho các số thực dương a bc thỏa mãn abbcca 8. Tìm giá trị nhỏ nhất của biểu thức 3 1111 P abc a bb cc a 222. + Kí hiệu E là tập hợp gồm tất cả các tam thức bậc hai f x ax bx c có a 0 2 b ac 4 0. Tìm điều kiện cần và đủ đối với các số mn p để với mọi f x thuộc E ta đều có g x f x m ax b n bx c p cx a cũng thuộc E.