Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi khảo sát Toán 12 năm 2018 - 2019 trường THPT chuyên Bắc Ninh lần 2

Đề thi khảo sát Toán 12 năm 2018 – 2019 trường THPT chuyên Bắc Ninh lần 2 mã đề 101 được biên soạn nhằm kiểm tra các kiến thức Toán 10, Toán 11 và Toán 12 đã học giúp học sinh rèn luyện thường xuyên để hướng đến kỳ thi THPT Quốc gia 2019 môn Toán, đề gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử Toán 12 năm 2018 – 2019 trường THPT chuyên Bắc Ninh lần 2 : + Xét các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Hai mặt phẳng cùng vuông góc với một mặt phẳng thì song song với nhau. B. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau. C. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song songvới nhau. D. Hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ ba thì song song với nhau. [ads] + Cho hàm số có f đạo hàm trên khoảng I. Xét các I mệnh đề sau: (I). Nếu f'(x) < 0, ∀x ∈ I thì hàm số nghịch biến trên I. (II). Nếu f'(x) ≤ 0, ∀x ∈ I (dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên I) thì hàm số nghịch biến trên I. (III). Nếu f'(x) ≤ 0, ∀x ∈ I thì hàm số nghịch biến trên khoảng I. (IV). Nếu f'(x) ≤ 0, ∀x ∈ I và  f'(x) = 0 tại vô số điểm trên thì hàm I số không f thể nghịch biến trên khoảng I. Trong các mệnh đề trên. Mệnh đề nào đúng, mệnh đề nào sai? A. I, II và IV đúng, còn III sai. B. I, II, III và IV đúng. C. I và II đúng, còn III và IV sai. D. I, II và III đúng, còn IV sai. + Một chiếc thùng đựng nước có hình của một khối lập phương chứa đầy nước. Đặt vào trong thùng đó một khối có dạng nón sao cho đỉnh trùng với tâm một mặt của lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. Tính tỉ số thể tích của lượng nước trào ra ngoài và lượng nước còn lại ở trong thùng.

Nguồn: toanmath.com

Đọc Sách

Đáp án và lời giải chi tiết đề minh họa tốt nghiệp THPT 2022 môn Toán
giới thiệu đến quý thầy, cô giáo và các em học sinh bảng đáp án và lời giải chi tiết đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán do Bộ Giáo dục và Đào tạo công bố (ngày 31 tháng 03 năm 2022). Bảng đáp án và lời giải chi tiết được thực hiện bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC: 1. Phuong Tran. 2. Trần Minh Hưng. 3. Dương Quang. 4. Huong Nguyen 5. Trung Nguyen. 6. Đỗ Hằng. 7. Nguyễn Thanh Bằng. 8. Liễu Hoàng. 9. Van Anh. 10. Sinh Son Nguyen. 11. Nam Nguyễn. 12. Tho Nguyen. 13. Trịnh Trung Hiếu. 14. Sơn Trường. 15. Hoàng Yến. 16. Phạm Văn Hùng.
Ma trận đề tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán
giới thiệu đến quý thầy, cô giáo và các em học sinh ma trận đề tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán, nhằm giúp các em nắm vững các nội dung cần ôn tập, cũng như phân phối độ khó trong từng nội dung, để có sự chuẩn bị tốt nhất cho kì thi TN THPT môn Toán năm học 2021 – 2022; ma trận đề được biên soạn bởi thầy giáo Hồ Phương Nam (giáo viên Toán trường THPT Lê Lai, tỉnh Thanh Hoá). 11.1 Tổ hợp – xác suất: + Hoán vị – Chỉnh hợp – Tổ hợp. + Cấp số cộng, cấp số nhân. + Xác suất. 11.2 Hình học không gian: + Góc. + Khoảng cách. 12.1 Đạo hàm và ứng dụng: + Đơn điệu của HS. + Cực trị của HS. + Min – Max của hàm số. + Đường tiệm cận. + Khảo sát và vẽ đồ thị. + Tương giao. 12.2 Hàm số mũ – Logarit: + Lũy thừa – mũ – Logarit. + HS Mũ – Logarit. + PT Mũ – Logarit. + BPT Mũ – Logarit. 12.3 Số phức: + Định nghĩa và tính chất. + Phép toán. + PT bậc hai theo hệ số thực. + Min – Max của mô đun số phức. 12.4 Nguyên Hàm – Tích Phân: + Nguyên hàm. + Tích phân. + Ứng dụng TP tính diện tích. + Ứng dụng TP tính thể tích. 12.5 Khối đa diện: + Đa diện lồi – Đa diện đều. + Thể tích khối đa diện. 12.6 Khối tròn xoay: + Khối nón. + Khối trụ. + Khối cầu. 12.7 Giải tích trong không gian: + Phương pháp tọa độ. + Phương trình mặt cầu. + Phương trình mặt phẳng. + Phương trình đường thẳng.
Đề khảo sát Toán thi tốt nghiệp THPT 2022 lần 1 sở GDĐT Vĩnh Phúc
Thứ Sáu ngày 18 tháng 03 năm 2022, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát kiến thức chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022 lần thứ nhất. Đề khảo sát Toán thi tốt nghiệp THPT 2022 lần 1 sở GD&ĐT Vĩnh Phúc mã đề 205 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề). Trích dẫn đề khảo sát Toán thi tốt nghiệp THPT 2022 lần 1 sở GD&ĐT Vĩnh Phúc : + Một người thợ cần thiết kế một bể cá hình hộp chữ nhật bằng kính, có chiều cao là 0,8m, thể tích 3 576dm. Biết rằng phần nắp phía trên của bể cá người thợ đó để trống một ô có diện tích bằng 30% diện tích đáy bể. Biết rằng loại kính mà người thợ đó sử dụng làm mặt bên và nắp bể có giá 1000000 đồng/2 m và loại kính để làm mặt đáy có giá thành 1200000đồng/2m. Giả sử phần tiếp xúc giữa các mặt là không đáng kể. Số tiền mua kính ít nhất để hoàn thành bể cá gần nhất với số tiền nào sau đây? A. 4,1 triệu đồng B. 3, 2 triệu đồng C. 2,8 triệu đồng D. 3,8 triệu đồng. + Đầu mỗi tháng anh Hiếu gửi tiết kiệm ngân háng số tiền 10 triệu đồng với hình thức lãi kép, lãi suất là 0, 5% / tháng. Hỏi sau đúng 5 năm thì anh Hiếu nhận được số tiền cả gốc và lãi gần nhất với số tiền nào dưới đây, giả sử rằng trong suốt quá trình gửi, anh Hiếu không rút tiền ra và lãi suất ngân hàng không thay đổi. + Cho một hình nón đỉnh S có đáy là đường tròn tâm O, bán kính R 5 và góc ở đỉnh là 2 với 2 sin 3. Một mặt phẳng P vuông góc với SO tại H và cắt hình nón theo một đường tròn tâm H. Gọi V là thể tích của khối nón đỉnh O và đáy là đường tròn tâm H. Biết 50 81 V khi a SH b với a b và a b là phân số tối giản. Tính giá trị của biểu thức.
Bộ đề tham khảo hướng đến kỳ thi THPT Quốc gia năm 2022 môn Toán
Tài liệu gồm 411 trang, được tổng hợp bởi thầy giáo Lê Quang Xe (trường THPT Nguyễn Tất Thành, tỉnh Gia Lai), tuyển tập bộ đề tham khảo hướng đến kỳ thi THPT Quốc gia năm 2022 môn Toán. MỤC LỤC : Đề số 1 1 Đề số 2 22. Đề số 3 42 Đề số 4 62. Đề số 5 82 Đề số 6 102. Đề số 7 126 Đề số 8 145. Đề số 9 164 Đề số 10 183. Đề số 11 206 Đề số 12 226. Đề số 13 246 Đề số 14 268. Đề số 15 289 Đề số 16 309. Đề số 17 330 Đề số 18 352. Đề số 19 371 Đề số 20 390.