Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GDĐT Vĩnh Phúc

Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 02 phần: phần trắc nghiệm gồm 04 câu, chiếm 02 điểm, phần tự luận gồm 04 câu, chiếm 08 điểm, thời gian làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Cho parabol (P): y = 1/2.x^2 và đường thẳng d: y = 2x + m (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn (x1x2 + 1)^2 = x1 + x2 + x1x2 + 3. + Một đội xe theo kế hoạch mỗi ngày chở số tấn hàng như nhau và dự định chở 140 tấn hàng trong một số ngày. Do mỗi ngày đội xe đó chở vượt mức 5 tấn nên đội xe đã hoàn thành kế hoạch sớm hơn thời gian dự định 1 ngày và chở thêm được 10 tấn hàng. Hỏi số ngày dự định theo kế hoạch là bao nhiêu? [ads] + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ điểm A kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm). Kẻ đường kính BD của đường tròn (O). Đường thẳng đi qua O vuông góc với đường thẳng AD và cắt AD, BC lần lượt tại K, E. Gọi I là giao điểm của OA và BC. a) Chứng minh rằng các tứ giác ABOC, AIKE nội tiếp đường tròn. b) Chứng minh rằng OI.OA = OK.OE. c) Biết OA = 5 cm, đường tròn (O) có bán kính R = 3cm. Tính độ dài đoạn thẳng BE.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào 10 chuyên môn Toán cơ sở năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán cơ sở năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 01 tháng 06 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chung)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề chung cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào ngày 01/06/2018 nhằm đánh giá, phân loại năng lực học sinh khối 9, từ đó các trường THPT thuộc sở GD và ĐT Bình Phước có căn cứ để đưa ra mức điểm tuyển sinh phù hợp, tuyển chọn các em học sinh phù hợp với tiêu chí để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chuyên)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề dành cho thí sinh thi vào trường chuyên) được biên soạn nhằm đánh giá năng lực học sinh khối 9, từ đó các trường THPT chuyên thuộc sở GD&ĐT Bình Phước có căn cứ tuyển sinh vào lớp 10 để chuẩn bị cho năm học mới, đề gồm 1 trang với 6 bài toán tự luận, thí sinh có 120 phút để hoàn thành đề thi, kỳ thi được tổ chức vào ngày 03/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước : + Xét các số thực a, b, c với b ≠ a + c sao cho phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm thực m, n thỏa mãn 0 ≤ m, n ≤ 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = [(a – b)(2a – c)]/[a(a – b + c)]. [ads] + Tìm tất cả các số nguyên tố p sao cho 16p + 1 là lập phương của số nguyên dương. + Cho Parabol (P): y = 1/2.x^2 và đường thẳng (d): y = (m + 1)x – m^2 – 1/2 (m là tham số). Với giá trị nào của m thì đường thẳng (d) cắt Parabol (P) tại hai điểm A(x1;y1), B(x2;y2) sao cho biểu thức T = y1 + y2 – x1.x2 đạt giá trị nhỏ nhất.
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Nam Định (đề chung)
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Nam Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút, đề nhằm tuyển chọn các em học sinh lớp 9 có năng khiếu môn Toán vào học tại các trường THPT chuyên tại tỉnh Nam Định, đề thi có lời giải chi tiết .