Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết cơ bản và bài tập về khối đa diện - Trần Sĩ Tùng

Tài liệu gồm 15 trang trình bày lý thuyết cơ bản và tuyển chọn các dạng toán khối đa diện, tài liệu do thầy Trùn Sĩ Tùng biên soạn. I. QUAN HỆ SONG SONG 1. Hai đường thẳng song song 2. Đường thẳng và mặt phẳng song song 3. Hai mặt phẳng song song 4. Chứng minh quan hệ song song a) Chứng minh 2 đường thẳng song song Có thể sử dụng 1 trong các cách sau: + Chứng minh 2 đường thẳng đó đồng phẳng, rồi áp dụng phương pháp chứng minh song song trong hình học phẳng (như tính chất đường trung bình, định lí Talét đảo …) + Chứng minh 2 đường thẳng đó cùng song song với đường thẳng thứ ba + Áp dụng các định lí về giao tuyến song song b) Chứng minh đường thẳng song song với mặt phẳng Để chứng minh d // (P), ta chứng minh d không nằm trong (P) và song song với một đường thẳng d’ nào đó nằm trong (P) c) Chứng minh hai mặt phẳng song song Chứng minh mặt phẳng này chứa hai đường thẳng cắt nhau lần lượt song song với hai đường thẳng trong mặt phẳng kia. II. QUAN HỆ VUÔNG GÓC 1. Hai đường thẳng vuông góc 2. Đường thẳng và mặt phẳng vuông góc 3. Hai mặt phẳng vuông góc 4. Chứng minh quan hệ vuông góc [ads] III. GÓC – KHOẢNG CÁCH 1. Góc 2. Khoảng cách a) Khoảng cách từ một điểm đến đường thẳng (mặt phẳng) bằng độ dài đoạn vuông góc vẽ từ điểm đó đến đường thẳng (mặt phẳng) b) Khoảng cách giữa đường thẳng và mặt phẳng song song bằng khoảng cách từ một điểm bất kì trên đường thẳng đến mặt phẳng c) Khoảng cách giữa hai mặt phẳng song song bằng khoảng cách từ một điểm bất kì trên mặt phẳng này đến mặt phẳng kia d) Khoảng cách giữa hai đường thẳng chéo nhau bằng: + Độ dài đoạn vuông góc chung của hai đường thẳng đó + Khoảng cách giữa một trong hai đường thẳng với mặt phẳng chứa đường thẳng kia và song song với đường thẳng thứ nhất + Khoảng cách giữa hai mặt phẳng, mà mỗi mặt phẳng chứa đường thẳng này và song song với đường thẳng kia IV. Nhắc lại một số công thức trong Hình học phẳng 1. Thể tích của khối hộp chữ nhật 2. Thể tích của khối chóp 3. Thể tích của khối lăng trụ 4. Một số phương pháp tính thể tích khối đa diện a) Tính thể tích bằng công thức + Tính các yếu tố cần thiết: độ dài cạnh, diện tích đáy, chiều cao … + Sử dụng công thức để tính thể tích b) Tính thể tích bằng cách chia nhỏ Ta chia khối đa diện thành nhiều khối đa diện nhỏ mà có thể dễ dàng tính được thể tích của chúng. Sau đó, cộng các kết quả ta được thể tích của khối đa diện cần tính c) Tính thể tích bằng cách bổ sung Ta có thể ghép thêm vào khối đa diện một khối đa diện khác sao cho khối đa diện thêm vào và khối đa diện mới tạo thành có thể dễ tính được thể tích d) Tính thể tích bằng công thức tỉ số thể tích

Nguồn: toanmath.com

Đọc Sách

Hình không gian thể tích từ cơ bản đến nâng cao - Nguyễn Tiến Đạt
Tài liệu gồm 42 trang tóm tắt lý thuyết, công thức tính và hướng dẫn giải các dạng toán về thể tích của khối đa diện. Tài liệu phù hợp để các học sinh bị “mất gốc” ôn lại kỹ năng giải toán hình học không gian. Nội dung tài liệu gồm: ÔN TẬP 1: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 9 – 10 1. Hệ thức lượng trong tam giác vuông 2. Hệ thức lượng trong tam giác thường 3. Các công thức tính diện tích ÔN TẬP 2: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 11 A. QUAN HỆ SONG SONG §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG §2. HAI MẶT PHẲNG SONG SONG B. QUAN HỆ VUÔNG GÓC §1. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG §2. HAI MẶT PHẲNG VUÔNG GÓC §3. KHOẢNG CÁCH 1. Khoảng cách từ 1 điểm tới 1 đường thẳng, đến 1 mặt phẳng 2. Khoảng cách giữa đường thẳng và mặt phẳng song song 3. Khoảng cách giữa hai mặt phẳng song song 4. Khoảng cách giữa hai đường thẳng chéo nhau [ads] §4.GÓC 1. Góc giữa hai đường thẳng a và b 2. Góc giữa đường thẳng a không vuông góc với mặt phẳng (P) 3. Góc giữa hai mặt phẳng 4. Diện tích hình chiếu ÔN TẬP 3: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 12 A. CÁC CÔNG THỨC THỂ TÍCH CỦA KHỐI ĐA DIỆN 1. Thể tích khối lăng trụ: 2. Thể tích khối chóp: 3. Tỉ số thể tích tứ diện: B. PHÂN DẠNG BÀI TẬP LOẠI 1: THỂ TÍCH LĂNG TRỤ 1. Dạng 1: Khối lăng trụ đứng có chiều cao hay cạnh đáy 2. Dạng 2: Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng 3. Dạng 3: Lăng trụ đứng có góc giữa hai mặt phẳng 4. Dạng 4: Khối lăng trụ xiên LOẠI 2: THỂ TÍCH KHỐI CHÓP Một số hình chóp đặc biệt: + Hình chóp tam giác đều + Hình chóp tứ giác đều + Hình chóp có một cạnh bên vuông góc với đáy 1. Dạng 1: Khối chóp có cạnh bên vuông góc với đáy 2. Dạng 2: Khối chóp có một mặt bên vuông góc với đáy 3. Dạng 3: Khối chóp đều 4. Dạng 4: Khối chóp và phương pháp tỉ số thể tích
Phân loại dạng và phương pháp giải nhanh hình không gian - Nguyễn Vũ Minh, Lê Thị Phượng (Tập 2)
Tài liệu gồm 60 trang, phân loại các dạng bài tập và phương pháp giải nhanh các bài toán về hình lăng trụ. Nội dung tài liệu gồm: Lý thuyết cơ bản và các công thức tính a. Hình lăng trụ đứng Hình lăng trụ đứng là hình lăng trụ có cạnh bên vuông góc với đáy. Các mặt bên của hình lăng trụ đứng là hình chữ nhật và vuông góc với mặt đáy. b. Hình lăng trụ đều: Hình lăng tru đều là hình lăng trụ đứng có đáy là đa giác đều. Các mặt bên của hình lăng trụ đều là những hình chữ nhật bằng nhau và vuông góc với mặt đáy. [ads] c. Hình hộp đứng: Hình hộp đứng là hình lăng trụ đứng có đáy là hình bình hành. Trong hình hộp đứng 4 mặt bên đều là hình chữ nhật. d. Hình hộp chữ nhật Hình hộp chữ nhật là hình hộp đứng có đáy là hình chữ nhật. Tất cả 6 mặt của hình hộp chữ nhật đều là hình chữ nhật. Ví dụ và bài tập trắc nghiệm Bài tập trích từ các đề thi có giải Một số bài TEST thể tích chóp – lăng trụ sưu tầm
Chuyên đề khối đa diện - Trần Quốc Nghĩa
Tài liệu gồm 78 trang bao gồm lý thuyết cần nắm, hướng dẫn giải các dạng toán và bài tập trắc nghiệm có đáp án chuyên đề khối đa diện. – Vấn đề 1. Kiến thức cần nhớ – Vấn đề 2. Khối đa diện – Vấn đề 3. Đa diện lồi, đa diện đều – Vấn đề 4. Thể tích khối đa diện + Hình 1. Hình chóp S.ABCD, có đáy ABCD là hình chữ nhật (hoặc hình vuông) và SA vuông góc với đáy + Hình 2. Hình chóp S.ABCD, có đáy ABCD là hình thang vuông tại A và B và SA vuông góc với đáy + Hình 3. Hình chóp tứ giác đều S.ABCD + Hình 4. Hình chóp S.ABC, có sa vuông góc với đáy (ABC) [ads] + Hình 6a. Hình chóp S.ABC có một mặt bên (SAB) vuông góc với đáy (ABCD) H6a.1 – Góc giữa cạnh bên và mặt đáy H6a.2 – Góc giữa mặt bên và mặt đáy + Hình 6b. Hình chóp S.ABCD có một mặt bên (SAB) vuông góc với đáy (ABCD) và ABCD là hình chữ nhật hoặc hình vuông H6b.1 – Góc giữa cạnh bên và mặt đáy H6b.2 – Góc giữa mặt bên và mặt đáy + Hình 7. Hình lăng trụ Bài tập tổng hợp Đáp án và giải trắc nghiệm
Phân loại dạng và phương pháp giải nhanh hình không gian - Nguyễn Vũ Minh (Tập 1)
Tài liệu gồm 77 trang, phân loại các dạng bài tập và phương pháp giải nhanh các bài toán về hình chóp. Nội dung gồm: + Tóm tắt lý thuyết cơ bản + Phân dạng bài tập theo dạng hình + Bài tập minh họa có lời giải chi tiết + Bài tập trắc nghiệm tự luyện [ads] Bạn đọc có thể xem tiếp tập 2 tại đây: Phân loại dạng và phương pháp giải nhanh hình không gian – Nguyễn Vũ Minh, Lê Thị Phượng (Tập 2)