Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh chuyên Toán

Nội dung Tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh chuyên Toán Bản PDF - Nội dung bài viết Tuyển tập bài toán bất đẳng thức trong kì thi tuyển sinh chuyên Toán Tuyển tập bài toán bất đẳng thức trong kì thi tuyển sinh chuyên Toán Tài liệu này được biên soạn bởi tác giả Nguyễn Nhất Huy từ Tạp Chí và Tư Liệu Toán Học. Được chia thành 4 phần chính giúp học sinh hiểu rõ về bất đẳng thức và cách giải các bài toán liên quan trong kì thi tuyển sinh vào lớp 10 chuyên Toán. Phần 1 bắt đầu bằng việc giới thiệu các kiến thức cơ bản về bất đẳng thức, bao gồm một số kí hiệu phổ biến và các bất đẳng thức như AM – GM, Cauchy – Schwarz, cũng như điều kiện có nghiệm của phương trình. Phần 2 tập trung vào các bài toán bất đẳng thức thường xuất hiện trong các kỳ thi tuyển sinh vào lớp 10 chuyên Toán, mang tính chất lý thú và thách thức cho học sinh. Phần 3 giới thiệu các phương pháp chứng minh bất đẳng thức khác nhau, từ tam thức bậc hai đến phương pháp PQR và bất đẳng thức Schur, cũng như phân tích tổng bình phương SOS và Schus – SOS để giúp học sinh làm quen với các kỹ năng giải bài toán phức tạp hơn. Phần 4 là các bài toán luyện tập, giúp củng cố kiến thức và kỹ năng của học sinh trong việc áp dụng bất đẳng thức vào thực tế. Tuyển tập này không chỉ giúp học sinh nắm vững kiến thức căn bản về bất đẳng thức mà còn phát triển kỹ năng giải quyết bài toán một cách logic và chính xác trong kì thi tuyển sinh chuyên Toán.

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 chuyên môn Toán (chung - XH) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên xã hội) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào 10 chuyên môn Toán (chung - TN) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên tự nhiên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (môn chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Lai Châu : + Chủ Nhật hàng tuần, Nam thường tập thể dục bằng cách đạp xe đạp trên một quãng đường từ nhà lên Thành phố và ngược lại. Vận tốc đạp xe đạp của Nam lúc đi nhanh hơn lúc về 3km/h. Biết quãng đường từ nhà Nam đến Thành phố là 30km và tổng thời gian cả đi lẫn về là 4 giờ 30 phút. Tính vận tốc đạp xe đạp lúc đi của Nam. + Cho tam giác ABC vuông tại A, biết cạnh BC = 10cm, góc B = 60 độ (hình vẽ bên). Tính cạnh AC, với sin 60°. + Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD với đường tròn (C nằm giữa M và D, O và A nằm về hai phía đối với CD). Gọi H là giao điểm của MO và AB. a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh MC.MD = MH.MO. c)Kẻ đường kính AI của (O), các dây IC, ID cắt MO tại P và Q. Chứng minh OP = OQ.
Đề thi vào 10 môn Toán (chung) năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dùng chung cho tất cả các thí sinh) năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2023. Trích dẫn Đề thi vào 10 môn Toán (chung) năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Tìm m, n để đường thẳng (d): y = mx + n đi qua điểm A(2;3) và cắt đường thẳng y = x – 2 tại điểm có hoành độ bằng −1. + Cho phương trình x2 − 2(m + 1)x + m2 + 4 = 0 (m là tham số). 1. Giải phương trình khi m = 6. 2. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn 6×12 + 6x1x2 = (m + 1)(x13 + x23 – 12×2). + Cho đường tròn (O) đường kính AB. Trên đường tròn (O) lấy điểm C không trùng với B sao cho CA > CB. Các tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại D. Gọi H là hình chiếu vuông góc của C trên AB, E là giao điểm của hai đường thẳng OD và AC. 1. Chứng minh tứ giác OADC nội tiếp đường tròn. 2. Gọi F là giao điểm của hai đường thẳng CD và AB. Chứng minh 2BCF + CFB = 90. 3. Gọi M là giao điểm của hai đường thẳng BD và CH. Chứng minh OC/EM – EO/ED = 1.