Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Thừa Thiên Huế

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Thừa Thiên Huế Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Thừa Thiên Huế Vào ngày ... tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 của sở GD&ĐT Thừa Thiên Huế bao gồm 01 trang với 06 bài toán dạng tự luận. Thời gian học sinh làm bài thi là 120 phút. Đề thi có đáp án và lời giải chi tiết. Dưới đây là một số câu hỏi được trích dẫn từ đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Thừa Thiên Huế: Câu 1: Để xây dựng thành phố Huế ngày càng đẹp hơn và khuyến khích người dân rèn luyện sức khỏe, Ủy ban nhân dân tỉnh Thừa Thiên Huế đã cho xây dựng tuyến đường đi bộ ven bờ Bắc sông Hương. Một người đi bộ trên tuyến đường này, khởi hành từ cầu Trường Tiền đến cầu Dã Viên rồi quay về lại cầu Trường Tiền hết tất cả 17/18 giờ. Tính vận tốc của người đó lúc về, biết rằng vận tốc lúc đi lớn hơn vận tốc lúc về là 0,5 km/h. Câu 2: Một chiếc cốc thủy tính có dạng hình trụ, chiều cao bằng 10cm và chứa một lượng nước có thể tích bằng một nửa thể tích của chiếc cốc. Một chiếc cốc thủy tinh khác có dạng hình nón (không chứa gì cả) và có bán kính đáy bằng bán kính đáy chiếc cốc hình trụ đã cho. Tính chiều cao của chiếc cốc có dạng hình nón (bỏ qua bề dày của thành cốc và đáy cốc). Câu 3: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Gọi M là một điểm bất kỳ trên cung nhỏ AC sao cho BCM nhọn (M không trùng A và C). Gọi E và F lần lượt là chân các đường vuông góc kẻ từ M đến BC và AC. Chứng minh rằng: a) Tứ giác MFEC nội tiếp. b) Tam giác FEM và tam giác ABM đồng dạng. c) MA.MQ = MP.MF và góc PQM = 90 độ. Đây là một số câu hỏi thú vị và phù hợp để học sinh thử sức và phát triển khả năng tư duy toán học. Chúc các em thành công trong kỳ thi tuyển sinh!

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán
Nội dung Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Bản PDF - Nội dung bài viết Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Bộ tài liệu này bao gồm 32 trang với 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Trong số các đề thi có hướng dẫn giải chi tiết giúp cho việc học tập và ôn tập hiệu quả hơn.
Đề thi thử tuyển sinh vào năm 2017 môn Toán Phòng GD và ĐT Tam Đảo Vĩnh Phúc lần 1
Nội dung Đề thi thử tuyển sinh vào năm 2017 môn Toán Phòng GD và ĐT Tam Đảo Vĩnh Phúc lần 1 Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1 Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1 Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1 bao gồm 4 câu hỏi trắc nghiệm và 5 câu tự luận, với đáp án và lời giải chi tiết. Trong đề thi có các bài toán như sau: Hai vòi nước cùng chảy vào một cái bể và trong 5 giờ bể sẽ đầy. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì bể sẽ được 2/3 nước. Hỏi nếu mỗi vòi chảy một mình, thì trong bao lâu bể mới đầy? Cho đường tròn (O), M là một điểm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn (O) với A, B là các tiếp điểm; MPQ là một cát tuyến không đi qua tâm của đường tròn (O), P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB, AQ tương ứng tại R, S. Gọi trung điểm đoạn PQ là N. Chứng minh rằng: a) Các điểm M, A, N, O, B cùng thuộc một đường tròn và bán kính của đường tròn đó. b) PR = RS. Đề thi cung cấp bài toán thú vị, đòi hỏi sự tư duy logic và lập luận chặt chẽ của thí sinh. Hy vọng qua thử sức với đề thi này, các thí sinh có thể nắm vững kiến thức và kỹ năng cần thiết để chuẩn bị cho kỳ thi chính thức sắp tới. Chúc các bạn thành công!
Đề thi thử tuyển sinh vào năm 2017 môn Toán trường THCS An Đà Hải Phòng lần 1
Nội dung Đề thi thử tuyển sinh vào năm 2017 môn Toán trường THCS An Đà Hải Phòng lần 1 Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh vào năm 2017 môn Toán trường THCS An Đà Hải Phòng lần 1 Đề thi thử tuyển sinh vào năm 2017 môn Toán trường THCS An Đà Hải Phòng lần 1 Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS An Đà – Hải Phòng lần 1 bao gồm 5 câu hỏi tự luận. Dưới đây là một số bài toán đáng chú ý: - Trong một bài toán, hội mĩ thuật Hải Phòng thiết kế một Pano quảng cáo dạng hình chữ nhật với chu vi là 68m và diện tích bằng 273m². Học sinh cần xác định liệu kích thước của tấm Pano quảng cáo đó có phù hợp với "Tỉ lệ vàng" hay không. - Trong một bài toán khác, đề cho đường tròn (O; R) và dây BC cố định không đi qua tâm O. Học sinh cần chứng minh các đặc điểm của các tứ giác và tam giác liên quan trong trường hợp cụ thể này. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức toán học đã học để giải quyết các vấn đề phức tạp. Đồng thời, cũng đánh giá khả năng suy luận và logic của học sinh trong việc giải quyết vấn đề.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán trường THPT chuyên Lê Quý Đôn Bình Định
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán trường THPT chuyên Lê Quý Đôn Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán trường THPT chuyên Lê Quý Đôn Bình Định Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán trường THPT chuyên Lê Quý Đôn Bình Định Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT chuyên Lê Quý Đôn – Bình Định là một đề thi khó với 5 bài toán tự luận, mỗi bài toán đều có lời giải chi tiết. Một trong những bài toán trong đề đề cập đến việc tính vận tốc ban đầu của một chiếc ô tô. Cụ thể, hai thành phố A và B cách nhau 450 km. Chiếc ô tô đi từ A đến B với vận tốc dự kiến, nhưng do tăng vận tốc 5 km/h nên đã đến B sớm hơn 1 giờ so với thời gian dự kiến. Học sinh cần phải tính toán để tìm ra vận tốc ban đầu của ô tô. Bài toán khác đề cập đến đường tròn và các phép chứng minh liên quan đến các điểm trên đường tròn. Học sinh cần phải chứng minh các điều kiện đã được nêu trong bài toán, từ đó áp dụng kiến thức học được để giải quyết vấn đề. Đề thi này không chỉ là cơ hội để học sinh thể hiện kiến thức mà còn đánh giá khả năng vận dụng kiến thức vào thực tế và khả năng giải quyết vấn đề logic của học sinh.