Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nắm trọn chuyên đề mũ - logarit và tích phân

Cuốn sách gồm 455 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề mũ – logarit và tích phân, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề mũ – logarit và tích phân: PHẦN I . MŨ VÀ LOGARIT. CHỦ ĐỀ 1. MỞ ĐẦU VỀ LŨY THỪA. Dạng 1. Tính, rút gọn, so sánh các số liên quan đến lũy thừa. CHỦ ĐỀ 2. MŨ – LOGARIT. Dạng 1. Biến đổi mũ – logarit. CHỦ ĐỀ 3. HÀM SỐ LŨY THỪA, MŨ VÀ LOGARIT. Dạng 1. Bài tập về hàm số lũy thừa, hàm số mũ và hàm số logarit. CHỦ ĐỀ 4. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LOGARIT. Dạng 1. Bài tập về phương trình mũ, phương trình logarit số 01. Dạng 2. Bài tập về phương trình mũ, phương trình logarit số 02. Dạng 3. Bài tập về phương trình mũ, phương trình logarit chứa tham số 01. Dạng 4. Bài tập về phương trình mũ, phương trình logarit chứa tham số 02. CHỦ ĐỀ 5. BPT MŨ – BPT LOGARIT. Dạng 1. Biện luận nghiệm của phương trình mũ – logarit. Dạng toán tìm GTLN và GTNN của hàm số mũ – logarit. Dạng toán liên quan đến hàm đặc trưng. Dạng toán tìm cặp số nguyên thỏa mãn điều kiện. Dạng toán lãi suất. Dạng toán thực tế liên quan đến sự tang trưởng. Dạng toán thường xuất hiện trong đề thi của Bộ GD&ĐT. PHẦN II . NGUYÊN HÀM – TÍCH PHÂN. CHỦ ĐỀ 1. NGUYÊN HÀM. Dạng 1. Phương pháp tính nguyên hàm. CHỦ ĐỀ 2. TÍCH PHÂN. Dạng 1. Phương pháp tính tích phân. Dạng 2. Tích phân cho bởi nhiều hàm. Dạng 3. Tích phân hàm ẩn phần 1. Dạng 3. Tích phân hàm ẩn phần 2. Dạng 4. Ứng dụng tích phân tính diện tích, thể tích. Dạng 5. Tích phân trong đề thi của Bộ GD&ĐT.

Nguồn: toanmath.com

Đọc Sách

Các kĩ thuật xử lý tích phân - Trần Đình Cư
Tài liệu gồm có 75 trang, được biên soạn bởi thầy Trần Đình Cư, hướng dẫn một số kĩ thuật xử lý bài toán trắc nghiệm tích phân thường gặp trong chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và đề thi THPT Quốc gia môn Toán. Mục lục tài liệu các kĩ thuật xử lý tích phân – Trần Đình Cư: A. KIẾN THỨC TÍCH PHÂN TRONG SÁCH GIÁO KHOA CẦN NẮM B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN TRẮC NGHIỆM Dạng 1 : Tích phân hữu tỉ. 1. Phương pháp (Trang 3). 2. Các ví dụ rèn luyện kĩ năng (Trang 4). 3. Bài tập rèn luyện tốc độ (Trang 7). Dạng 2 : Tích phân có chưa căn thức. 1. Phương pháp (Trang 10). 2. Các ví dụ rèn luyện kĩ năng (Trang 11). 3. Bài tập rèn luyện tốc độ (Trang 14). Dạng 3 : Tích phân lượng giác. 1. Phương pháp (Trang 18). 2. Các ví dụ rèn luyện kĩ năng (Trang 20). 3. Bài tập rèn luyện tốc độ (Trang 24). Dạng 4 : Tích phân từng phần. 1. Phương pháp (Trang 27). 2. Các ví dụ rèn luyện kĩ năng (Trang 27). 3. Bài tập rèn luyện tốc độ (Trang 32). [ads] Dạng 5 : Tích phân chứa dấu giá trị tuyệt đối. 1. Phương pháp (Trang 38). 2. Các ví dụ rèn luyện kĩ năng (Trang 39). 3. Bài tập rèn luyện tốc độ (Trang 42). Dạng 6 : Tích phân siêu việt. 1. Phương pháp (Trang 44). 2. Các ví dụ rèn luyện kĩ năng (Trang 44). 3. Bài tập rèn luyện tốc độ (Trang 48). Dạng 7 : Tích phân hàm ẩn. 1. Phương pháp (Trang 54). 2. Các ví dụ rèn luyện kĩ năng (Trang 56). 3. Bài tập rèn luyện tốc độ (Trang 61). Dạng 8 : Bất đẳng thức tích phân. 1. Phương pháp (Trang 67). 2. Các ví dụ rèn luyện kĩ năng (Trang 68). 3. Bài tập rèn luyên tốc độ (Trang 70).
50 bài toán ứng dụng tích phân tính quãng đường vật chuyển động
Tài liệu gồm 28 trang được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, chọn lọc và hướng dẫn giải 50 bài toán ứng dụng tích phân tính quãng đường vật chuyển động, bổ trợ cho học sinh trong quá trình học chương trình Giải tích 12 chương 3: nguyên hàm – tích phân và ứng dụng và ôn thi THPT Quốc gia môn Toán. Khái quát nội dung tài liệu 50 bài toán ứng dụng tích phân tính quãng đường vật chuyển động: A. Lý thuyết: Một vật chuyển động theo phương trình v(t) trong khoảng thời gian từ t = a đến t = b (a < b) sẽ di chuyển được quãng đường s bằng tích phân của hàm v(t) với t từ a đến b. B. Bài tập: + Một vật chuyển động trong 3 giờ với vận tốc v(km/h) phụ thuộc thời gian t(h) có đồ thị của vận tốc như hình vẽ bên. Trong khoảng thời gian 1 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh A(2;9) và trục đối xứng song song với trục tung, khoảng thời gian còn lại đô thị là một đoạn thẳng song song với trục hoành. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó (kết quả làm tròn hàng phần trăm). [ads] + Cho đồ thị biểu thị vận tốc của hai xe A và B khởi hành cùng một lúc, bên cạnh nhau và trên cùng một con đường. Biết đồ thị biểu diễn vận tốc của xe A là một đường Parabol, đồ thị biểu diễn vận tốc của xe B là một đường thẳng ở hình bên. Hỏi sau khi đi được 3 giây, khoảng cách giữa hai xe là bao nhiêu mét? + Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162 (mét) so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật v(t) = 10t  – t^2, trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, v(t) được tính theo đơn vị mét / phút (m/p). Nếu như vậy thì bắt đầu tiếp đất vận tốc v của khí cầu là?
Chuyên đề tích phân hàm ẩn - Hoàng Phi Hùng
Tài liệu gồm 46 trang được biên soạn bởi thầy giáo Hoàng Phi Hùng, phân dạng và hướng dẫn giải các dạng toán thường gặp về tích phân hàm ẩn, đây là dạng toán vận dụng cao (nâng cao / khó / …) về tích phân thường gặp trong chương trình Giải tích 12 chương 3 (nguyên hàm – tích phân và ứng dụng) và các đề thi trắc nghiệm môn Toán 12. Nội dung tài liệu chuyên đề tích phân hàm ẩn – Hoàng Phi Hùng gồm 09 dạng toán và được chia thành hai phần tương ứng với hai buổi học, mỗi phần bao gồm: dạng toán và phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm vận dụng có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu chuyên đề tích phân hàm ẩn – Hoàng Phi Hùng: + Dạng toán 1. Điều kiện hàm ẩn có dạng: 1. $f'(x) = g(x).h(f(x)).$ 2. $f'(x).h(f(x)) = g(x).$ + Dạng toán 2. Cho hàm số $f(x)$ thỏa mãn: $A.f(x) + B.u’.f(u) + C.f(a + b – x) = g(x).$ + Dạng toán 3. Điều kiện hàm ẩn $A.f(u(x)) + B.f(v(x)) = g(x).$ + Dạng toán 4. Hàm ẩn xác định bởi ẩn dưới cận tích phân. [ads] + Dạng toán 5. Cho hàm số $y = f(x)$ thỏa mãn $f(u(x)) = v(x)$ và $v(x)$ là hàm đơn điệu (luôn đồng biến hoặc nghịch biến) trên $R.$ Hãy đi tính tích phân $I = \int_a^b f (x)dx.$ + Dạng toán 6. Cho hàm số $y = f(x)$ thỏa mãn $g[f(x)] = x$ và $g(t)$ là hàm đơn điệu (luôn đồng biến hoặc nghịch biến) trên R. Hãy tính tích phân $I = \int_a^b f (x)dx.$ + Dạng toán 7. Cho $f(x).f(a + b – x) = {k^2}$, khi đó $I = \int_a^b {\frac{{dx}}{{k + f(x)}}} = \frac{{b – a}}{{2k}}.$ + Dạng toán 8. Cho $\left\{ {\begin{array}{*{20}{l}} {f(a + b – x) = f(x)}\\ {\int_a^b x f(x)dx = I} \end{array}} \right.$ $ \Rightarrow \int_a^b f (x)dx = \frac{{2I}}{{a + b}}.$ + Dạng toán 9. Tính tích phân $I = \int_a^b {\max } \{ f(x);g(x)\} dx$ hoặc $I = \int_a^b {\min } \{ f(x);g(x)\} dx.$
Nguyên hàm, tích phân và ứng dụng - Nguyễn Chín Em
Tài liệu gồm 827 trang được biên soạn bởi thầy Nguyễn Chín Em bao gồm kiến thức trọng tâm, câu hỏi trắc nghiệm có đáp án và lời giải chi tiết chủ đề nguyên hàm, tích phân và ứng dụng thuộc chương trình Giải tích 12 chương 3. Khái quát nội dung tài liệu nguyên hàm, tích phân và ứng dụng – Nguyễn Chín Em: 1. NGUYÊN HÀM A. KIẾN THỨC TRỌNG TÂM 1. Nguyên hàm và tính chất. 1.1 Nguyên hàm. 1.2 Tính chất. 2. Phương pháp tính nguyên hàm. 2.1 Phương pháp tính nguyên hàm đổi biến số. 2.2 Phương pháp tính nguyên hàm từng phần. 2.3 Bảng nguyên hàm cơ bản. 2.4 Bảng nguyên hàm mở rộng. 3. Các dạng toán và bài tập. 3.1 Tính nguyên hàm bằng bảng nguyên hàm. 3.2 Tìm nguyên hàm bằng phương pháp đổi biến số. 3.3 Nguyên hàm từng phần. B. CÂU HỎI TRẮC NGHIỆM : Nhận biết, Thông hiểu, Vận dụng thấp, Vận dụng cao. [ads] 2. TÍCH PHÂN A. KIẾN THỨC TRỌNG TÂM 1. Khái niệm tích phân. 1.1 Định nghĩa tích phân. 1.2 Tính chất của tích phân. 2. Phương pháp tính tích phân. 2.1 Phương pháp đổi biến số. 2.2 Phương pháp tích phân từng phần. 3. Các dạng toán và bài tập. 3.1 Tích phân cơ bản và tính chất tính phân. 3.2 Tích phân hàm số phân thức hữu tỉ. 3.3 Tính chất của tích phân. 3.4 Tích phân hàm số chứa dấu giá trị tuyệt đối. 3.5 Phương pháp đổi biến số. 3.6 Tích phân từng phần. B. CÂU HỎI TRẮC NGHIỆM : Nhận biết, Thông hiểu, Vận dụng thấp, Vận dụng cao. 3. ỨNG DỤNG TÍCH PHÂN A. TÍNH DIỆN TÍCH HÌNH PHẲNG 1. Hình phẳng giới hạn bởi một đường cong và trục hoành. 2. Hình phẳng giới hạn bởi hai đường cong. B. TÍNH THỂ TÍCH KHỐI TRÒN XOAY C. DẠNG TOÁN VÀ BÀI TẬP 1. Diện tích hình phẳng và bài toán liên quan. 1.1 Diện tích hình phẳng. 1.2 Tìm vận tốc, gia tốc, quãng đường trong vật lí. 2. Thể tích. 2.1 Thể tích của vật thể. 2.2 Tính thể tích của vật thể tròn xoay. D. CÂU HỎI TRẮC NGHIỆM : Nhận biết, Thông hiểu, Vận dụng thấp, Vận dụng cao.