Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nắm trọn chuyên đề mũ - logarit và tích phân

Cuốn sách gồm 455 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề mũ – logarit và tích phân, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề mũ – logarit và tích phân: PHẦN I . MŨ VÀ LOGARIT. CHỦ ĐỀ 1. MỞ ĐẦU VỀ LŨY THỪA. Dạng 1. Tính, rút gọn, so sánh các số liên quan đến lũy thừa. CHỦ ĐỀ 2. MŨ – LOGARIT. Dạng 1. Biến đổi mũ – logarit. CHỦ ĐỀ 3. HÀM SỐ LŨY THỪA, MŨ VÀ LOGARIT. Dạng 1. Bài tập về hàm số lũy thừa, hàm số mũ và hàm số logarit. CHỦ ĐỀ 4. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LOGARIT. Dạng 1. Bài tập về phương trình mũ, phương trình logarit số 01. Dạng 2. Bài tập về phương trình mũ, phương trình logarit số 02. Dạng 3. Bài tập về phương trình mũ, phương trình logarit chứa tham số 01. Dạng 4. Bài tập về phương trình mũ, phương trình logarit chứa tham số 02. CHỦ ĐỀ 5. BPT MŨ – BPT LOGARIT. Dạng 1. Biện luận nghiệm của phương trình mũ – logarit. Dạng toán tìm GTLN và GTNN của hàm số mũ – logarit. Dạng toán liên quan đến hàm đặc trưng. Dạng toán tìm cặp số nguyên thỏa mãn điều kiện. Dạng toán lãi suất. Dạng toán thực tế liên quan đến sự tang trưởng. Dạng toán thường xuất hiện trong đề thi của Bộ GD&ĐT. PHẦN II . NGUYÊN HÀM – TÍCH PHÂN. CHỦ ĐỀ 1. NGUYÊN HÀM. Dạng 1. Phương pháp tính nguyên hàm. CHỦ ĐỀ 2. TÍCH PHÂN. Dạng 1. Phương pháp tính tích phân. Dạng 2. Tích phân cho bởi nhiều hàm. Dạng 3. Tích phân hàm ẩn phần 1. Dạng 3. Tích phân hàm ẩn phần 2. Dạng 4. Ứng dụng tích phân tính diện tích, thể tích. Dạng 5. Tích phân trong đề thi của Bộ GD&ĐT.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập câu hỏi trắc nghiệm nguyên hàm - tích phân dùng Casio
Tài liệu gồm 62 trang hướng dẫn giải nhanh các bài toán trắc nghiệm nguyên hàm – tích phân bằng máy tính Casio, tài liệu do các thầy, cô giáo trong nhóm nhóm Casio – Latex biên tập. 1. Nguyên hàm các hàm hữu tỉ – Thầy Lê Anh Dũng a. Phương pháp bấm máy b. Các ví dụ 2. Nguyên hàm các hàm hữu tỉ – Thầy Dương Bùi Đức a. Cơ sở lí thuyết giải nguyên hàm hữu tỷ b. Thực hiện phép chia đa thức – Sử dụng máy tính Vinacal 570 es plus II 3. Nguyên hàm dạng tìm hệ số C – Thầy Phan Minh Tâm 4. Nguyên hàm dạng cho f(x) và F(a). Tính F(b) [ads] 5. Tích phân dạng đặc biệt – Thầy Huỳnh Văn Quy 6. Tích phân hàm hữu tỉ – Thầy Triệu Minh Hà 7. Tích phân của hàm lượng giác – Thầy Nguyễn Hữu Nhanh Tiến 8. Đổi biến chứa e^x – Thầy Nguyễn Vân Trường 9. Tích Phân Casio liên quan đến lnx – Thầy Nguyễn Tài Tuệ 10. Tích phân từng phần – Thầy Trần Hiếu
1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán
Tài liệu gồm 202 trang tổng hợp 1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán, tài liệu được biên soạn bởi thầy Trần Văn Tài nhằm giúp học sinh có tài liệu tham khảo ôn thi THPT Quốc gia 2018 môn Toán. Nội dung tài liệu : + 414 bài tập trắc nghiệm nguyên hàm có đáp án + 451 bài tập trắc nghiệm tích phân có đáp án + 422 bài tập trắc nghiệm ứng dụng của nguyên hàm – tích phân có đáp án [ads] Các bài tập trong tài liệu được tuyển chọn với nhiều dạng bài khác nhau, với đầy đủ các mức độ dễ – khó thích hợp cho nhiều đối tượng học sinh, giúp các em nắm được các dạng toán nguyên hàm, tích phân và ứng dụng có thể xuất hiện trong đề thi.
Tổng hợp 414 bài tập trắc nghiệm nguyên hàm trong đề thi thử có đáp án - Trần Văn Tài
Tài liệu gồm 63 trang tổng hợp 414 bài tập trắc nghiệm chủ đề nguyên hàm trong các đề thi thử THPT Quốc gia 2017 môn Toán, có đáp án (Những phương án được tô màu đỏ) Trích dẫn tài liệu : + Cho hai hàm số f(x), g(x) là hàm số liên tục trên R, có F(x), G(x) lần lượt là một nguyên hàm của f(x), g(x). Xét các mệnh đề sau: (I): F(x) + G(x) là một nguyên hàm của f(x) + g(x) (II): kF(x) là một nguyên hàm của kf(x) với k ∈ R (III): F(x).G(x) là một nguyên hàm của f(x)g(x) Những mệnh đề nào là mệnh đề đúng? A. (I) và (II) B. (I), (II) và (III) [ads] C. (II) D. (I) + Ký hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của R. Cho hàm số f(x) xác định trên K. Ta nói F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu như: A. F(x) = f'(x) + C, C là hằng số tuỳ ý B. F'(x) = f(x) C. F'(x) = f(x) + C, C là hằng số tuỳ ý D. F(x) = f'(x) + Giả sử F(x) là nguyên hàm của hàm số f(x) = 4x – 1. Đồ thị của hàm số F(x) và f(x) cắt nhau tại một điểm trên trục tung. Tất cả các điểm chung của đồ thị hai hàm số trên là: A. (0; 1) B. (5/2; 9) C. (0; 1) và (5/2; 9) D. (5/2; 8)
Một số vấn đề chọn lọc nguyên hàm, tích phân và ứng dụng - Vũ Ngọc Huyền
Tài liệu gồm 24 trang trình bày một số vấn đề chọn lọc về chủ đề nguyên hàm, tích phân và ứng dụng cần nắm vững. Nội dung tài liệu gồm các phần: + Phần 1. Lý thuyết và ví dụ mẫu 1. Nguyên hàm và các tính chất cơ bản 2. Hai phương pháp cơ bản để tìm nguyên hàm 3. Khái niệm và các tính chất cơ bản của tích phân 4. Hai phương pháp cơ bản tính tích phân 5. Ứng dụng hình học của tích phân + Phần 2. Bài tập rèn luyện kỹ năng 1. Nguyên hàm – chọn lọc các bài tập về nguyên hàm trong các đề thi thử 2. Tích phân – chọn lọc các bài tập về tích phân trong các đề thi thử 3. Ứng dụng của tích phân trong hình học. [ads] + Phần 3. Bổ sung một số dạng về nguyên hàm – tích phân 1. Tích phân và nguyên hàm một số hàm lượng giác 2. Đổi biến lượng giác 3. Nguyên hàm và tích phân của hàm phân thức hữu tỉ 4. Bảng một số nguyên hàm thường gặp + Phần 4. Ứng dụng của nguyên hàm, tích phân trong thực tế