Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 2 Toán 11 năm 2022 - 2023 trường Thới Thuận - Cần Thơ

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 2 môn Toán 11 GDPT năm học 2022 – 2023 trường THCS & THPT Thới Thuận, thành phố Cần Thơ; đề thi cấu trúc 50% trắc nghiệm + 50% tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 2 Toán 11 năm 2022 – 2023 trường Thới Thuận – Cần Thơ : + Một vật chuyển động thẳng theo phương trình 3 St t t 2 4 1 trong đó t được tính bằng giây t 0 và S tính bằng mét. a. Tìm vận tốc và gia tốc tức thời của vật tại thời điểm t. b. Khi tốc độ tức thời của vật đạt 28 m s thì vật di chuyển được quãng đường bao xa? + Cho hình lăng trụ đứng ABC A B C có cạnh CC a 2 tam giác ABC là tam giác vuông cân ở C có cạnh CA a. a. Chứng minh rằng A ACC C CBB. b. Tìm là góc giữa hai mặt phẳng ABC và ABC. Tính tan. c. Gọi điểm D là trung điểm của cạnh CC’. Tính khoảng cách từ D đến ABC’. + Trong các mệnh đề sau đây, mệnh đề nào là đúng? A. Hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng song song với mặt phẳng thứ ba đó. B. Hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì chúng song song với nhau. C. Hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì vuông góc nhau. D. Hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng cũng vuông góc với mặt phẳng thứ ba đó.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THCSTHPT Trí Đức - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THCS&THPT Trí Đức, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Trưng Vương - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Tìm các đạo hàm của các hàm số sau. + Viết phương trình tiếp tuyến với đồ thị (C) của hàm số 3 y x x 3 tại điểm A. + Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B và BC a; SA vuông góc mặt phẳng ABC và SA a 3. a/ Chứng minh: BC SAB. b/ Gọi M là trung điểm của đoạn AC. Chứng minh rằng SBM SAC. c/ Tính góc giữa hai mặt phẳng SBC và SAC. d/ Gọi G là trọng tâm tam giác ABC. Tính khoảng cách từ G đến mặt phẳng SBC.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Cho hình chóp S.ABCD, đáy ABCD là hình vuông tâm O. SB ABCD và SD a AB a 3 BM vuông góc SC tại M. 1) Chứng minh rằng SAD SAB và tam giác SCD là tam giác vuông. 2) Chứng minh rằng AM là đường cao của tam giác SAC. 3) Tính góc giữa hai mặt phẳng (SAD) và (ABCD). + Viết phương trình tiếp tuyến của đồ thị biết tiếp tuyến song song với đường thẳng d y x 4 7. + Gọi 1 2 k k lần lượt là hệ số góc của các tiếp tuyến với đồ thị tại các điểm có hoành độ bằng 1 x và 2 x. Tìm m để 1 2 k k đạt giá trị lớn nhất biết rằng 1 2 x x là hai nghiệm của phương trình 2 2 2 1 0.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường Trương Vĩnh Ký - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký – TP HCM : + Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh 2a và có tâm O. Cạnh bên SA a 2 và vuông góc mặt đáy (ABCD). a) Chứng minh: CD SAD. b) Chứng minh hai mặt phẳng (SAC) và (SBD) vuông góc với nhau. c) Tính số đo của góc hợp bởi đường thẳng SO và mặt đáy (ABCD). d) Tính khoảng cách giữa hai đường thẳng SO và BM với M là trung điểm SC. + Cho hàm số 3 2 2 y f x x mx m x m 2 3 có đồ thị là Cm. Gọi 1 k là hệ số góc của tiếp tuyến của đồ thị tại điểm có hoành độ bằng –1, gọi 2 k là hệ số góc của tiếp tuyến của đồ thị tại điểm có hoành độ bằng 0. Tìm m để tổng 1 2 k k đạt giá trị nhỏ nhất. + Viết phương trình tiếp tuyến của đồ thị (C) hàm số 4 2 y x x 3 2 tại điểm thuộc đồ thị có hoành độ 0 x 2.