Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Bình Chiểu TP HCM

Nội dung Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Bình Chiểu TP HCM Bản PDF - Nội dung bài viết Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2022 - 2023 trường THPT Bình Chiểu TP HCM Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2022 - 2023 trường THPT Bình Chiểu TP HCM Sytu trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 10 đề kiểm tra chất lượng giữa học kỳ 1 môn Toán lớp 10 năm học 2022 - 2023 tại trường THPT Bình Chiểu, thành phố Hồ Chí Minh. Đề thi được biên soạn theo hình thức 100% tự luận với 05 câu hỏi và bài toán, thời gian làm bài 60 phút (không kể thời gian phát đề). Đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm mã đề 101 - 102. Kỳ thi sẽ diễn ra vào ngày 27 tháng 10 năm 2022. Trích dẫn Đề giữa học kỳ 1 Toán lớp 10 năm 2022 - 2023 trường THPT Bình Chiểu - TP HCM: Biểu diễn miền nghiệm của bất phương trình sau trên mặt phẳng tọa độ: \(x + 4y < 8\). Một học sinh trường THPT Bình Chiểu muốn làm hạc và hoa để bán gây quỹ từ thiện giúp đỡ bạn trong trường mắc bệnh hiểm nghèo. Biết gấp 1 con hạc cần 3 phút, làm 1 bông hoa cần 5 phút. Giá bán của 1 con hạc là 2.000 đồng, 1 bông hoa là 3.000 đồng. Học sinh này có không quá 60 phút để làm và tổng số sản phẩm không vượt quá 16. Hỏi cần làm bao nhiêu sản phẩm mỗi loại để thu được nhiều tiền nhất? Xác định các hệ số \(a\) và \(b\) của hàm số bậc hai \(y = ax^2 + bx + 10\). Biết đồ thị đi qua điểm A(2;14) và có trục đối xứng \(x = 2\). Đây là những câu hỏi thú vị, đòi hỏi sự tư duy logic và kiến thức Toán căn bản để giải quyết. Chúc các em học sinh lớp 10 trường THPT Bình Chiểu đạt kết quả cao trong kì thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra chất lượng giữa HK1 Toán 10 trường THPT Mê Linh - Thái Bình
Đề kiểm tra chất lượng giữa HK1 Toán 10 trường THPT Mê Linh – Thái Bình gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho hàm số y = x^2 – 2x – 1. Tìm câu sai? A. Hàm số đồng biến (1; +∞) B. Đồ thị hàm số có trục đối xứng x = -2 C. Hàm số nghịch biến (-∞; 1) D. Đồ thị hàm số nhận I(1; -2) làm đỉnh [ads] + Cho tam giác ABC. Gọi lần lượt các điển A’, B’, C’ lần lượt là trung điểm của canh AB, BC, CA. Véc tơ cùng hướng với véc tơ nào trong các véc tơ sau đây? A. Véc tơ AC’   B. Véc tơ BA C Véc tơ C’B   D. Véc tơ AB + Parabol (P) đi qua ba điểm A(-1;0), B(0;-4) và C(1;-6) có phương trình là: A. x^2 + 3x – 4 B. x^2 – 3x – 4 C. -x^2 + 3x – 4 D. x^2 – 3x + 4
Đề kiểm tra giữa học kỳ 1 năm học 2017 - 2018 môn Toán 10 trường THPT Hưng Nhân - Thái Bình
Đề kiểm tra giữa học kỳ 1 năm học 2017 – 2018 môn Toán 10 trường THPT Hưng Nhân – Thái Bình gồm 4 trang với 50 câu hỏi tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 28 tháng 10 năm 2017. Nội dung đề thi bao hàm các chương: mệnh đề và tập hợp, hàm số bậc nhất và hàm số bậc hai, vectơ, tích vô hướng của 2 vectơ và ứng dụng. Trích dẫn đề kiểm tra : + Lớp 10A có 15 học sinh giỏi Toán, 12 học sinh giỏi Văn, 10 học sinh giỏi Tiếng Anh, 5 học sinh giỏi cả Toán và Văn, 5 học sinh giỏi cả Toán và Tiếng Anh, 6 học sinh giỏi cả Văn và Tiếng Anh, 1 học sinh giỏi cả ba môn Toán, Văn, Tiếng Anh. Hỏi trong lớp 10A có bao nhiêu em giỏi ít nhất một môn(Toán, Văn, Tiếng Anh)? A. 54 B. 21 C. 37 D. 22 [ads] + Cho tam giác ABC có AC = 6a và G là trọng tâm của tam giác. Tập hợp điểm E là điểm thỏa mãn |vtEA + vtEB + vtEC| = |vtBA – vtBC| là: A. Đường tròn tâm G đường kính AC B. Đường tròn tâm G bán kính R = 3a C. Đường tròn tâm G bán kính R = 2a D. Đường tròn tâm G đường kính AB + Cho tam giác ABC nội tiếp đường tròn tâm O,M là trung điểm BC, H là trực tâm của tam giác, G là trọng tâm tam giác, I là là tâm đường tròn nội tiếp tam giác ABC và BC = a; CA = b; AB = c Trong các mệnh đề sau có bao nhiêu mệnh đề đúng? 1) vtOA + vtOB + vtOC = 3.vtOG 2) vtHB + vtHC = 2.vtHM 3) a.vtIA + b.vtIB + c.vtIC = 0 4) vtOA + vtOB + vtOC = vtOH
Đề khảo sát chất lượng giữa học kỳ I môn Toán 10 - Lương Tuấn Đức
Đề khảo sát chất lượng giữa học kỳ I môn Toán 10 do thầy Lương Tuấn Đức biên soạn với 40 câu hỏi trắc nghiệm, thời gian làm bài 60 phút, đề thi có đáp án . Trích dẫn đề thi : + Ký hiệu M = (a;b) là tập xác định của hàm số y = 1/√(-x^2 + 8x – 2). Tính a + b. A. 6 B. 8 C. 5 D. 4 [ads] + Công ty A chuyên sản xuất một loại sản phẩm, bộ phận sản xuất ước tính rằng với q sản phẩm được sản xuất một tháng thì tổng chi phí sẽ là C(q) = 8q^2 + 40q – 3456 (đơn vị tiền tệ). Giá của mỗi sản phẩm được công ty bán với giá R(q) = 140 – 2q. Hãy xác định số sản phẩm công ty A cần sản xuất trong một tháng (giả sử công ty này bán hết được số sản phẩm mình làm ra) để thu về lợi nhuận cao nhất ? A. 8 sản phẩm B. 5 sản phẩm C. 7 sản phẩm D. 6 sản phẩm + Cho bốn điểm A, B, C, D. Gọi I, J tương ứng là trung điểm của BC, CD. Tồn tại hằng số k thỏa mãn đẳng thức vtAB + vtAI + vtJA + vtDA = k.vtDB. Giá trị k nằm trong khoảng nào? A. (0;1) B. (1;2) C. (2;3) D. (4;6)
Đề kiểm tra giữa HKI lớp 10 môn Toán trường THPT Nguyễn Thị Minh Khai - Hà Nội
Đề kiểm tra giữa HKI lớp 10 môn Toán trường THPT Nguyễn Thị Minh Khai – Hà Nội gồm 2 đề: đề trắc nghiệm và đề tự luận. Đề trắc nghiệm gồm 25 câu hỏi, đề tự luận gồm 3 câu hỏi, thời gian làm bài mỗi đề là 45 phút. Trích dẫn đề thi : + Một tia sáng chiếu xiên một góc 45 độ đến điểm O trên bề mặt của một chất lỏng thì bị khúc xạ như hình vẽ bên. Trong mặt phẳng (Oxy) như đã thể hiện trong hình vẽ, gọi y = f(x) là hàm số có đồ thị trùng với đường đi của tia sáng nói trên. Tính f(-2002) + f(2002). A. 4004 B. 2002 C. 0. D. 2002. [ads] + Cho hàm số y = f(x) = -x^2 + 4x – 1 có đồ thị như hình vẽ bên. Xét hàm số y = g(x) = -x^2 + 4|x| – 1 và các kết luận sau: (I). Hàm số y = g(x) đồng biến trên (-∞; 2) (II). Đồ thị hàm số y = g(x) nhận trục tung là trục đối xứng (III). Hàm số y = g(x) có giá trị lớn nhất và không có giá trị nhỏ nhất (IV). Với x ∈ (-3; -2), hàm số y = g(x) nhận giá trị dương Trong các kết luận trên, số kết luận đúng là? A. 2 B. 4. C. 1 D. 3 + Cho hàm số y = x^2 – 2x – 3 1. Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số trên 2. Chứng minh rằng (P) cắt đường thẳng (d): y = 2x – 7 tại một điểm A duy nhất. Lập phương trình đường thẳng qua A và vuông góc với d 3. Tìm m để phương trình |x^2 – 2x – 3| = m có bốn nghiệm phân biệt