Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp Đirichlê và ứng dụng - Nguyễn Hữu Điển

Tài liệu gồm 184 trang, được biên soạn bởi tác giả Nguyễn Hữu Điển, hướng dẫn ứng dụng phương pháp Đirichlê trong giải toán. Nguyên lý những cái lồng và các chú thỏ đã được biết đến từ rất lâu. Ngay trong chương trình phổ thông cơ sở chúng ta cũng đã làm quen với phương pháp giải toán này. Thực ra nguyên lý này mang tên nhà bác học người Đức Pête Gutxtap Legien Dirichlet (1805 – 1859). Nguyên lý phát biểu rất đơn giản: Nếu chúng ta nhốt thỏ vào các lồng mà số lồng ít hơn số thỏ, thì thể nào cũng có một lồng nhốt ít nhất hai con thỏ. Chỉ bằng nguyên lý đơn giản như vậy hàng loạt các bài toán đã được giải. Cuốn sách được biên soạn lại theo từng chủ đề có liên quan đến nguyên lý, mỗi cách giải trong ví dụ của từng chương là áp dụng điển hình nguyên lý Đirichlê. Bài tập giải trước có liên quan đến bài giải sau nên cần lưu ý khi đọc sách. Với mong muốn cùng bạn đọc thảo luận một phương pháp chứng minh toán học và hy vọng cung cấp một tài liệu bổ ích cho các thầy cô giáo và các em học sinh ham mê tìm tòi trong toán học, tác giả mạnh dạn biên soạn cuốn sách này. MỤC LỤC : Chương 1. Nguyên lý Đirichlê và ví dụ. 1.1. Nguyên lý Đirichlê. 1.2. Ví dụ. 1.3. Bài tập. Chương 2. Số học. 2.1. Phép chia số tự nhiên. 2.2. Ví dụ. 2.3. Bài tập. Chương 3. Dãy số. 3.1. Nguyên lý Đirichlê cho dãy số vô hạn. 3.2. Ví dụ. 3.3. Bài tập. Chương 4. Hình học. 4.1. Ví dụ. 4.2. Bài tập. Chương 5. Mở rộng nguyên lý Đirichlê. 5.1. Nguyên lý Đirichlê mở rộng. 5.2. Ví dụ. 5.3. Bài tập. Chương 6. Bài tập số học nâng cao. 6.1. Định lý cơ bản của số học. 6.2. Ví dụ. 6.3. Bài tập. Chương 7. Bài tập dãy số nâng cao. 7.1. Ví dụ. 7.2. Bài tập. Chương 8. Số thực với tập trù mật. 8.1. Tập trù mật. 8.2. Ví dụ. 8.3. Bài tập. Chương 9. Những ứng dụng khác của nguyên lý Đirichlê. 9.1. Xấp xỉ một số thực. 9.2. Bài tập. Chương 10. Nguyên lý Đirichlê cho diện tích. 10.1. Phát biểu nguyên lý Đirichlê cho diện tích. 10.2. Ví dụ. 10.3. Bài tập. Chương 11. Toán học tổ hợp. 11.1. Ví dụ. 11.2. Bài tập. Chương 12. Một số bài tập hình học khác. 12.1. Ví dụ. 12.2. Bài tập. Chương 13. Một số đề thi vô địch. Chương 14. Bài tập tự giải. Chương 15. Lời giải và gợi ý.

Nguồn: toanmath.com

Đọc Sách

Bài toán về quỹ tích tập hợp điểm
Nội dung Bài toán về quỹ tích tập hợp điểm Bản PDF Nội dung này là tài liệu tập hợp 59 trang, tập trung vào việc giải bài toán về quỹ tích - tập hợp điểm trong môn Toán. Tài liệu cung cấp các bài toán khó và hay, đi kèm với đáp án và lời giải chi tiết. Đây là tài liệu hữu ích cho học sinh ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán và các kỳ thi học sinh giỏi cấp THCS.Tài liệu bắt đầu với việc giải thích định nghĩa của tập hợp điểm (quỹ tích), nơi một hình được xác định bởi các điểm thoả mãn một số tính chất. Sau đó, tài liệu hướng dẫn phương pháp chính để giải bài toán tập hợp điểm, bao gồm các bước cần thiết để tìm ra tập hợp các điểm thoả mãn một số điều kiện cho trước.Tài liệu cũng cung cấp một số kiến thức và tập hợp điểm cơ bản, như đường trung trực, tia phân giác, đường thẳng song song và đường tròn. Các định lí và hệ quả được trình bày rõ ràng, giúp học sinh hiểu rõ về các tập hợp điểm này và cách xác định chúng.Cuối cùng, tài liệu cũng đi kèm với các ví dụ minh họa và bài tập tự luyện để học sinh có thể rèn luyện kỹ năng giải bài toán về quỹ tích - tập hợp điểm. Hướng dẫn giải chi tiết giúp học sinh hiểu rõ từng bước giải quyết vấn đề và áp dụng kiến thức vào thực tế.Tóm lại, tài liệu này là nguồn thông tin hữu ích và chi tiết về cách giải bài toán về quỹ tích - tập hợp điểm trong môn Toán, giúp học sinh nắm vững kiến thức và kỹ năng cần thiết để thành công trong kỳ thi và các kỳ thi học sinh giỏi.
Các bài toán về tứ giác và đa giác đặc sắc
Nội dung Các bài toán về tứ giác và đa giác đặc sắc Bản PDF - Nội dung bài viết Các bài toán về tứ giác và đa giác đặc sắcMột số kiến thức về tứ giácCác bài tập tự luyện và hướng dẫn giải Các bài toán về tứ giác và đa giác đặc sắc Trong tài liệu này, bạn sẽ tìm thấy 82 trang chứa các bài toán thú vị về tứ giác và đa giác đặc sắc. Tất cả những bài toán này đều được chọn lọc kỹ càng, đảm bảo sự thú vị và khó khăn, đồng thời cung cấp đáp án và lời giải chi tiết. Đây sẽ là tài liệu hữu ích cho học sinh trong quá trình ôn tập để chuẩn bị cho kì thi vào lớp 10 môn Toán, cũng như cho việc ôn thi học sinh giỏi môn Toán ở bậc THCS. Một số kiến thức về tứ giác Trước hết, chúng ta cần biết rằng một tứ giác là một hình gồm bốn đoạn thẳng AB, BC, CD, DA và không có bất kỳ hai đoạn thẳng nào cùng nằm trên một đường thẳng. Tổng các góc của một tứ giác bằng 360 độ, và tổng các góc ngoài của một tứ giác cũng bằng 360 độ. Một khái niệm quan trọng khác về tứ giác là hình thang, là tứ giác có hai cạnh đối song song. Nếu một hình thang có hai cạnh bên song song, thì hai cạnh bên và hai cạnh đáy sẽ bằng nhau. Hình bình hành là tứ giác có các cặp cạnh đối song song, và trong hình bình hành, các cạnh và góc đối sẽ bằng nhau. Ngoài ra, còn có hình chữ nhật, hình thoi, và hình vuông, mỗi loại đều có những đặc điểm riêng biệt và các quy tắc tương ứng. Các bài tập tự luyện và hướng dẫn giải Tài liệu cũng cung cấp các ví dụ minh họa để giúp bạn hiểu rõ hơn về kiến thức về tứ giác và đa giác. Ngoài ra, có các bài tập tự luyện cùng với hướng dẫn giải chi tiết, giúp bạn rèn luyện kỹ năng và kiến thức một cách hiệu quả. Với tài liệu này, việc ôn tập và nắm vững kiến thức về tứ giác và đa giác sẽ trở nên dễ dàng và thú vị hơn bao giờ hết. Hãy cùng tham gia và trau dồi kiến thức để thành công trong kỳ thi sắp tới!
Các bài toán về tam giác đặc sắc
Nội dung Các bài toán về tam giác đặc sắc Bản PDF - Nội dung bài viết Bài toán về tam giác đặc sắc Bài toán về tam giác đặc sắc Sản phẩm tài liệu này bao gồm 90 trang, tập hợp các bài toán về tam giác đặc sắc thú vị và phức tạp, cung cấp đáp án và lời giải chi tiết. Được thiết kế để giúp học sinh tham khảo trong quá trình ôn tập dự thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. Bên dưới là một số nội dung chính trong tài liệu: Hệ thống kiến thức cơ bản về tam giác: Bao gồm các kiến thức về tổng ba góc trong tam giác, quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác, tam giác đồng dạng, hệ thức lượng trong tam giác. Một số kiến thức nâng cao thường áp dụng: Bao gồm các công thức về đường cao, đường trung tuyến, đường phân giác trong tam giác, các công thức về lượng giác trong tam giác, các định lí hình học nổi tiếng trong tam giác. Các thí dụ minh họa Bài tập tự luyện Hướng dẫn giải Tài liệu này sẽ giúp học sinh rèn luyện kỹ năng giải các bài toán về tam giác đặc sắc, từ những nội dung cơ bản đến những kiến thức nâng cao. Chắc chắn rằng người đọc sẽ có cơ hội hiểu sâu hơn về chủ đề này và chuẩn bị tốt cho các kì thi quan trọng.
Một số bài toán về đường tròn
Nội dung Một số bài toán về đường tròn Bản PDF - Nội dung bài viết Một số bài toán về đường tròn Một số bài toán về đường tròn Trong tài liệu có tổng cộng 116 trang, chúng ta sẽ tìm thấy một số bài toán về đường tròn được tuyển chọn kỹ lưỡng, đặc biệt là những bài toán hay và khó. Các bài toán này đi kèm với đáp án và lời giải chi tiết, giúp học sinh dễ dàng tham khảo trong quá trình ôn tập chuẩn bị thi vào lớp 10 môn Toán, cũng như ôn thi học sinh giỏi môn Toán ở bậc THCS. A. Một số kiến thức cần nhớ I. Sự xác định đường tròn: Tài liệu bao gồm định nghĩa, vị trí tương đối của một điểm đối với một đường tròn, cách xác định đường tròn và tính chất đối xứng của đường tròn. II. Liên hệ giữa đường kính và dây cung: So sánh độ dài của đường kính và dây, quan hệ vuông góc giữa đường kính và dây, liên hệ giữa dây và khoảng cách từ tâm đến dây. III. Vị trí tương đối của đường thẳng và đường tròn: Bao gồm vị trí tương đối của đường thẳng và đường tròn, dấu hiệu nhận biết tiếp tuyến của đường tròn, tính chất của hai tiếp tuyến cắt nhau, đường tròn nội tiếp tam giác và đường tròn bàng tiếp tam giác. IV. Vị trí tương đối của hai đường tròn: Bao gồm tính chất của đường nối tâm, vị trí tương đối của hai đường tròn và tiếp tuyến chung của hai đường tròn. V. Góc với đường tròn: Bao gồm góc ở tâm, góc nội tiếp, góc tạo bởi tia tiếp tuyến với dây cung, góc có đỉnh ở bên trong hoặc ở ngoài đường tròn, tứ giác nội tiếp, đường tròn ngoại tiếp và đường tròn nội tiếp. VI. Một số kiến thức bổ sung: Bao gồm một số tính chất về tiếp tuyến, dấu hiệu nhận biết tứ giác nội tiếp và một số định lí hình học nổi tiếng. B. Một số ví dụ minh họa Tài liệu cũng cung cấp một số ví dụ minh họa để giúp học sinh hiểu rõ hơn về các kiến thức được trình bày. C. Bài tập tự luyện Để giúp học sinh ôn tập và rèn luyện, tài liệu cung cấp một loạt bài tập tự luyện với đáp án chi tiết. D. Hướng dẫn giải Cuối cùng, tài liệu cung cấp hướng dẫn giải cho các bài tập, giúp học sinh tự kiểm tra và tự học sau khi đã tự luyện.