Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh 10 chuyên môn Toán năm 2020 2021 sở GD ĐT Hà Nam (chuyên)

Nội dung Đề tuyển sinh 10 chuyên môn Toán năm 2020 2021 sở GD ĐT Hà Nam (chuyên) Bản PDF - Nội dung bài viết Đề tuyển sinh 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nam (chuyên) Đề tuyển sinh 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nam (chuyên) Đề tuyển sinh 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nam (chuyên) là đề thi dành cho thí sinh muốn thi vào các lớp chuyên Toán tại các trường THPT chuyên thuộc sở Giáo dục và Đào tạo tỉnh Hà Nam. Trích dẫn đề tuyển sinh 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nam (chuyên): Giải hệ phương trình. Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), có đường cao AH. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M. Gọi A' là điểm đối xứng với A qua O. Đường thẳng MA' cắt các đường thẳng AH, BC theo thứ tự tại N và K. Gọi L là giao điểm của MA và BC. Đường thẳng A'I cắt đường tròn (O) tại điểm thứ hai D. Hai đường thẳng AD và BC cắt nhau tại điểm S. Chứng minh tam giác ANA' là tam giác cân và MA'.MK = ML.MA. Chứng minh MI^2 = ML.MA và tứ giác NHIK là tứ giác nội tiếp. Gọi I là trung điểm của cạnh SA, chứng minh ba điểm T, I, K thẳng hàng. Chứng minh nếu AB + AC = 2BC thì I là trọng tâm của tam giác AKS. Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn 2^x - y^2 + 4y + 61 = 0. Đề tuyển sinh này đòi hỏi thí sinh có kiến thức vững về Toán cùng khả năng giải quyết các vấn đề phức tạp. Hy vọng những thí sinh tham gia sẽ có thể tự tin và thành công trong kỳ thi tuyển sinh.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào THPT lần 1 năm 2024 - 2025 phòng GDĐT Vụ Bản - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Vụ Bản, tỉnh Nam Định; đề thi gồm 02 trang, cấu trúc 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào THPT lần 1 năm 2024 – 2025 phòng GD&ĐT Vụ Bản – Nam Định : + Ngày 04 06 1783 anh em nhà Mông–gôn–fi-ê (Montgolfier) người Pháp phát minh ra khinh khí cầu dùng không khí nóng. Coi khinh khí cầu này là hình cầu đường kính 11 m. Diện tích mặt khinh khí cầu đó bằng? + Cho hình vuông ABCD có chu vi là 40 cm. Vẽ cung tròn (B BA) cắt đường chéo BD tại M cung tròn (D DM) cắt các cạnh DA DC lần lượt tại E F (hình vẽ bên). Tính diện tích phần hình vuông ABCD ở ngoài hai cung tròn (phần tô đậm trong hình, kết quả làm tròn đến chữ số thập phân thứ hai). + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O có 2 đường cao BE, CF (E AC F AB) cắt nhau tại H. Tia AO cắt BC tại M và cắt (O) tại N. a) Chứng minh tứ giác BF CE nội tiếp và A F ANC E b) Gọi P Q lần lượt là hình chiếu của M trên AB, AC. Chứng minh HF NCB E và HE MQ HB HF MP NC.