Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Lai Thành Ninh Bình

Nội dung Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Lai Thành Ninh Bình Bản PDF Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 - 2023 trường THCS Lai Thành, Ninh Bình

Chào đón quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề kiểm tra và đánh giá giữa học kỳ 2 môn Toán lớp 9 năm học 2022 - 2023 tại trường THCS Lai Thành, huyện Kim Sơn, tỉnh Ninh Bình. Đề thi sẽ bao gồm 30% câu hỏi trắc nghiệm và 70% câu hỏi tự luận, với thời gian làm bài là 90 phút.

Đề thi sẽ cung cấp ma trận, đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em tự tin và xác định được điểm số của mình. Dưới đây là một số câu hỏi trắc nghiệm mẫu trong đề thi:

1. Phương trình nào sau đây là phương trình bậc nhất hai ẩn?
a) 2x + 3y = 5
b) 3x - 4y = 7
c) 4x + 2y = 9
d) 5x - 6y = 3

2. Một xe máy đi từ A đến B trong một thời gian dự định. Nếu vận tốc tăng thêm 14 km/h thì đến B sớm hơn 2 giờ, nếu giảm vận tốc đi 4 km/h thì đến B muộn 1 giờ. Tính vận tốc dự định và thời gian dự định đi hết quãng đường AB.

3. Cho nửa đường tròn (O) đường kính AB. Kẻ tiếp tuyến Bx với nửa đường tròn. Gọi C là điểm trên nửa đường tròn sao cho cung CB bằng cung CA, D là một điểm tuỳ ý trên cung CB (D khác C và B). Chứng minh tam giác ABE vuông cân và tứ giác CDFE nội tiếp.

Hãy tự tin và chinh phục mọi thách thức trong đề thi này! Chúc các em đạt kết quả cao và thành công trong học tập. Cảm ơn quý thầy cô và các em đã quan tâm và tham gia. Chúc mọi người một ngày vui vẻ và học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Yên Nghĩa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Yên Nghĩa, quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Yên Nghĩa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Nếu hai vòi nước cùng chảy vào một bể không có nước thì sau 6 giờ sẽ đầy bể. Nếu mở vòi thứ nhất trong 3 giờ rồi khóa lại và mở vòi thứ hai trong 2 giờ thì cả hai vòi chảy được 2/5 bể. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể? + Một cầu trượt trong công viên có độ dốc là 28 độ và có độ cao là 2,1m. Tính độ dài của mặt cầu trượt (làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho điểm A nằm bên ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC với đường tròn đó (B, C là các tiếp điểm). Gọi H là trung điểm của AB. Đường thẳng HC cắt đường tròn (O) tại K (K khác C). a) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. b) Chứng minh HB2 = HK.HC c) Gọi M là điểm đối xứng với K qua H. Chứng minh MO là tia phân giác của góc BMC.
Đề giữa kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi giữa học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; đề thi hình thức 100% tự luận, thời gian làm bài 90 phút. Trích dẫn Đề giữa kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ca nô chạy xuôi dòng 63km và ngược dòng 30km hết tất cả 5 giờ. Nếu cũng trên khúc sông đó, ca nô chạy xuôi dòng 42km và chạy ngược dòng 45km thì sẽ hết 5 giờ. Tính vận tốc thực của ca nô và vận tốc của dòng nước. + Cho hệ phương trình. a) Giải hệ phương trình với m = -5. b) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x – y = 1. + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trong tam giác ABC vẽ các đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh tứ giác AEHF nội tiếp 2) Chứng minh AF.AB = AC.AE 3) Gọi I, K lần lượt là hình chiếu của D trên HB và HC. Chứng minh IK // EF và IK vuông góc AO.
Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Đoàn Thị Điểm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Đoàn Thị Điểm, quận Nam Từ Liêm, thành phố Hà Nội (mã đề 002). Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Đoàn Thị Điểm – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Theo kế hoạch hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do áp dụng kĩ thuật mới nên tổ I đã vượt mức 18% và tổ II đã vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm được giao của mỗi tổ? + Cho đường tròn (O) đường kính AB và điểm E nằm giữa O và A. Kẻ dây MN vuông góc với AB tại E. Trên cung nhỏ BM lấy điểm C bất kì (C khác B và M). Kẻ MF vuông góc với BC tại F. Đường thẳng NC cắt MF tại D. a) Chứng minh tứ giác BEMF là tứ giác nội tiếp. b) Chứng minh EF song song với CN và tam giác BMD là tam giác cân. c) Tìm vị trí của điểm C để diện tích tam giác BND lớn nhất. + Cho các số thực dương a, b, c thỏa mãn a + b + c = 4. Tìm giá trị nhỏ nhất của biểu thức P = (a + b)/abc.
Đề giữa kì 2 Toán 9 năm 2022 - 2023 trường THCS Tam Khương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Tam Khương, quận Đống Đa, thành phố Hà Nội. Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 trường THCS Tam Khương – Hà Nội : + Giải bài toán bằng cách lập phương hoặc hệ phương trình: Trong tháng thứ nhất hai tổ sản xuất được 600 sản phẩm. Do cải tiến kĩ thuật nên sang tháng thứ hai, tổ I đã vượt mức 10% và tổ II đã vượt mức 20%. Vì vậy tháng thứ hai cả hai tổ sản xuất được 685 sản phẩm. Hỏi trong tháng thứ nhất mỗi tổ sản xuất được bao nhiêu sản phẩm? + Cho hàm số y = x2 có đồ thị là parabol (P) và hàm số y = 2x + 3 có đồ thị là đường thẳng (d). a) Vẽ đồ thị hai hàm số trên cùng một hệ trục tọa độ Oxy. b) Gọi M và N là giao điểm của (d) với (P). Tính diện tích tam giác OMN. + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AM, AN tới đường tròn (M, N là các tiếp điểm). 1. Chứng minh: Bốn điểm A, M, O, N cùng thuộc một đường tròn. 2. Trên cung nhỏ MN lấy điểm B khác M, N và B không là điểm chính giữa cung MN. Tia AB cắt đường tròn (O) tại điểm thứ hai C. Chứng minh: AM² = AB.AC. 3. Gọi H là giao điểm của AO và MN. Chứng minh: AHB = ACO.