Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 12 THPT cấp tỉnh năm 2019 - 2020 sở GDĐT Quảng Bình

Thứ Ba ngày 10 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2019 – 2020. Đề thi HSG Toán 12 THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán 12 THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Quảng Bình : + Cho tam giác đều ABC cạnh 8cm. Chia tam giác này thành 64 tam giác đều cạnh 1cm bởi các đường thẳng song song với các cạnh tam giác ABC (như hình vẽ). Gọi S là tập hợp các đỉnh của các tam giác cạnh 1cm. Chọn ngẫu nhiên 4 đỉnh thuộc S. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của hình bình hành nằm trong miền trong của tam giác ABC và có cạnh chứa các cạnh của các tam giác cạnh 1 cm ở trên. [ads] + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA ⊥(ABCD), SA = a. Một mặt phẳng qua CD cắt SA, SB lần lượt tại M, N. Đặt AM = x, với 0 < x < a. a. Tứ giác MNCD là hình gì? Tính diện tích tứ giác MNCD theo a và x. b. Xác định x để thể tích khối chóp S.MNCD bằng 2/9 lần thể tích khối chóp S.ABCD. + Cho hàm số y = x/(1 – x) có đồ thị (C) và điểm A(-1;1). Tìm các giá trị của m để đường thẳng (d): y = mx – m – 1 cắt đồ thị (C) tại hai điểm phân biệt M, N sao cho AM^2 + AN^2 đạt giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT An Giang
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT An Giang Bản PDF Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT An Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 19 tháng 12 năm 2021.
Đề chọn đội tuyển Toán năm 2021 2022 trường Phổ thông Năng khiếu TP HCM
Nội dung Đề chọn đội tuyển Toán năm 2021 2022 trường Phổ thông Năng khiếu TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển Toán năm học 2021 – 2022 trường Phổ thông Năng khiếu, thành phố Hồ Chí Minh; kỳ thi được diễn ra trong hai ngày: Thứ Bảy 04/12/2021 và Thứ Ba 07/12/2021.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Đồng Nai
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Đồng Nai Bản PDF Thứ Hai ngày 22 tháng 11 năm 2021, sở Giáo dục và Đào tạo Đồng Nai tổ chức kỳ thi chọn đội tuyển học sinh giỏi THPT môn Toán học dự thi cấp Quốc gia năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Đồng Nai gồm 05 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề chọn đội tuyển HSG lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề chọn đội tuyển HSG lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF Đề chọn đội tuyển HSG Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 24 tháng 11 năm 2021. Trích dẫn đề chọn đội tuyển HSG Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn tâm O và có các đường cao AD, BE, CF cắt nhau tại H. Gọi O1 là điểm đối xứng của O qua đường thẳng BC. AO1 cắt BC tại L, DE cắt HC tại M, DF cắt HB tại N. a) Chứng minh đường tròn ngoại tiếp tam giác DMN và đường tròn đường kính AL tiếp xúc nhau. b) Tiếp tuyến tại D của đường tròn đường kính AL cắt EF tại K. Chứng minh KH = KD. + Cho các số nguyên dương a, b, c phân biệt. Chứng minh tồn tại số nguyên n sao cho a + n, b + n, c + n là các số đôi một nguyên tố cùng nhau. + Trên mặt phẳng ta vẽ 3333 đường tròn đôi một khác nhau và có bán kính bằng nhau. Chứng minh rằng luôn chọn ra được trong số đó 34 đường tròn mà các đường tròn này đôi một có điểm chung hoặc đôi một không có điểm chung.