Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán THPT GDTX năm 2020 - 2021 sở GDĐT Đắk Lắk

Đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2020 – 2021 sở GD&ĐT Đắk Lắk gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 17 tháng 03 năm 2021. Trích dẫn đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2020 – 2021 sở GD&ĐT Đắk Lắk : + Cho hàm số y = f(x) = x^4 + mx^2 + 4 có đồ thị (C) với m là tham số. 1) Khi m = -5, viết phương trình các tiếp tuyến của đồ thị (C) tại giao điểm của nó với trục hoành. 2) Tìm tất cả các giá trị thực của m để đồ thị (C) có 3 điểm cực trị nằm trên các trục toạ độ. + Tìm tất cả các giá trị thực của tham số m để phương trình 4^x – m.2^(x + 1) + 2m = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện x1 + x2 = 4. + Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(1;2;1), B(-2;1;3), C(2;-1;3), D(0;3;1). Viết phương trình mặt phẳng (P) đi qua hai điểm A, B và cách đều hai điểm C, D sao cho C và D nằm khác phía so với mặt phẳng (P).

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2016 2017 sở GD và ĐT Ninh Bình
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2016 2017 sở GD và ĐT Ninh Bình Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 năm học 2016 – 2017 sở GD và ĐT Ninh Bình gồm 2 phần: + Phần trắc nghiệm: 40 câu + Phần tự luận: 4 câu
Đề thi tháng lần 2 lớp 12 môn Toán năm 2023 2024 trường THPT Ngô Sĩ Liên Bắc Giang
Nội dung Đề thi tháng lần 2 lớp 12 môn Toán năm 2023 2024 trường THPT Ngô Sĩ Liên Bắc Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi tháng lần 2 môn Toán lớp 12 năm học 2023 – 2024 trường THPT Ngô Sĩ Liên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề thi tháng lần 2 Toán lớp 12 năm 2023 – 2024 trường THPT Ngô Sĩ Liên – Bắc Giang : + Trong không gian Oxyz cho tứ diện ABCD có A B C D. Trên các cạnh AB AC AD lần lượt lấy các điểm BCD sao cho 4 AB AC AD AB AC AD. Viết phương trình mặt phẳng BCD biết tứ diện A B C D có thể tích nhỏ nhất. + Một khối trụ có đường cao bằng 5, chu vi của thiết diện qua trục gấp 3 lần đường kính đáy. Thể tích của khối trụ bằng? + Cho hàm số 4 2 fx 32 4. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m tổng giá trị các nghiệm phân biệt thuộc khoảng (−4;1) của phương trình 2 fx m 4 5 bằng -8? File WORD (dành cho quý thầy, cô):