Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 11 lần 2 năm 2018 2019 trường Thuận Thành 1 Bắc Ninh

Nằm trong kế hoạch ôn tập kiểm tra Toán 11 định kỳ, vừa qua, trường THPT Thuận Thành 1 – Bắc Ninh đã tổ chức kỳ thi khảo sát chất lượng Toán 11 năm học 2018 – 2019 lần thứ 2, nội dung kiểm tra bao gồm kiến thức Toán 11 các em đã được học từ đầu năm học đến giữa học kỳ 2 năm học 2018 – 2019 cùng với một số kiến thức trọng tâm trong chương trình Toán 10. Đề khảo sát Toán 11 lần 2 năm 2018 – 2019 trường Thuận Thành 1 – Bắc Ninh có mã đề 132 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm 04 lựa chọn A, B, C, D, học sinh có 90 phút để làm bài thi. [ads] Trích dẫn đề khảo sát Toán 11 lần 2 năm 2018 – 2019 trường Thuận Thành 1 – Bắc Ninh : + Cho phương trình: x3 + mx2 – ( m + 3)x + 1 = 0. Tìm khẳng định đúng trong các khẳng định sau: A. Với mọi m phương trình đã cho có đúng ba nghiệm phân biệt. B. Với mọi m phương trình đã cho vô nghiệm. C. Với mọi m phương trình đã cho có đúng một nghiệm. D. Với mọi m phương trình đã cho có đúng hai nghiệm phân biệt. + Một người thợ xây hợp đồng xây dựng một tòa tháp 10 tầng. Biết rằng diện tích mặt sàn tầng dưới cùng là 200m2, diện tích mặt sàn trên bằng 0,8 diện tích mặt sàn dưới liền kề. Người thợ cần tính số lượng gạch men đặc biệt cần mua để lát sàn tầng 10 trên cùng, biết 1 m2 gạch lát loại này giá 500000 đồng. Hỏi giá tiền mua gạch lát này gần nhất với số nào? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC nội tiếp trong đường tròn có phương trình (x – 5/2)^2 + (y – 13/6)^2 = 65/18. Gọi BD, CE là các đường cao của tam giác ABC, tọa độ hai điểm D(2;1), E(13/10;19/10). Biết điểm A có tung độ là số nguyên và B(xB;yB). Giá trị của biểu thức T = xB – yB bằng?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát môn Toán 11 năm học 2017 - 2018 trường THPT Quế Võ 2 - Bắc Ninh
Đề khảo sát môn Toán 11 năm học 2017 – 2018 trường THPT Quế Võ 2 – Bắc Ninh gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong hình lục giác đều ABCDEF tâm O, M và K là trung điểm của EF và BD. Phép quay tâm A góc quay 60◦ biến tam giác AFE thành: A. Tam giác AKD B. Tam giác AOC C. Tam giác DOB D. Tam giác F OB + Cho tứ diện ABCD có E là trung điểm của cạnh CD. Gọi M là trọng tâm các tam giác ABC, N là trung điểm của AE. Hỏi đường thẳng MN cắt bao nhiêu đường thẳng trong số 6 đường thẳng AB, BC, CA, AD, BD và CD? [ads] A. Cắt ba đường thẳng B. Cắt bốn đường thẳng C. Không đường thẳng nào cắt D. Cắt hai đường thẳng + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và AC, P là điểm trên cạnh AD sao cho AP = 2PD. Tìm giao điểm E của đường thẳng MP và mặt phẳng (BCD). A. E = BC ∩ MP B. E = BD ∩ MP C. E = CD ∩ MP D. E ≡ N
Đề thi KSCL Toán 11 lần 1 năm học 2017 - 2018 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 11 lần 1 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho tập A = {1, 2, 3, 4, 5, 6}. Từ các chữ số của tập A có thể lập được tất cả bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau. + Cho đường thẳng d: 3x – 2y + 1 = 0 và điểm I(1; 0). Phép vị tự tâm I, tỷ số 2 biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’. + Cho A(1; 2), B(-2; 5) và đường tròn (T): x^2 + y^2 – 4x + 2y – 4 = 0. Tìm tọa độ hai điểm C, D cùng thuộc đường tròn (T) sao cho tứ giác ABCD là hình bình hành. [ads]
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 - 2018 trường THPT Hàn Thuyên - Bắc Ninh
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 – 2018 trường THPT Hàn Thuyên – Bắc Ninh gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án .
Đề khảo sát chất lượng lần 1 năm học 2017 - 2018 môn Toán 11 trường THPT Đồng Đậu - Vĩnh Phúc
Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán 11 trường THPT Đồng Đậu – Vĩnh Phúc gồm 1 trang với 10 bài toán tự luận, mỗi câu tương ứng với 1 điểm, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Hàng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh được tính tại thời điểm t (giờ) trong 1 ngày bởi công thức h = 3cos(πt/8 + π/4) + 12 (0 < t ≤ 24). Hỏi mực nước biển cao nhất tại thời điểm nào? [ads] + Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trọng tâm G(4/3; 1), trung điểm BC là M(1; 1), đường cao kẻ từ B thuộc đường thẳng có phương trình x + y – 7 = 0. Hãy xác định tọa độ các đỉnh A, B, C. + Trong mặt phẳng tọa độ Oxy, cho đường hai thẳng d: x – 2y + 6 = 0 và d’: x – 2y + 13 = 0. Tìm tọa độ vectơ v, biết |v| = √10, d’ là ảnh của d qua phép tịnh tiến theo vectơ v và vectơ v có hoành độ là số nguyên.