Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 10 năm 2019 - 2020 trường Lương Thế Vinh - Hà Nội

Ngày … tháng 12 năm 2019, trường THCS&THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kì thi kiểm tra chất lượng học kì 1 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK1 Toán 10 năm học 2019 – 2020 trường THCS&THPT Lương Thế Vinh – Hà Nội mã đề 281 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút; đề hoàn thành tốt bài thi, học sinh cần ôn tập lại các kiến thức: mệnh đề và tập hợp, hàm số bậc nhất và bậc hai, phương trình và hệ phương trình, vectơ, tích vô hướng của hai vectơ và ứng dụng; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm học 2019 – 2020 trường THCS&THPT Lương Thế Vinh – Hà Nội : + Một học sinh giải phương trình như sau: Bước 1: Điều kiện xác định. Bước 2: Biến đổi tương đương. Bước 3: Vậy phương trình có nghiệm. Lời giải trên đúng hay sai, nếu sai thì sai bắt đầu từ bước nào? A. Lời giải đúng. B. Lời giải sai từ bước 1. C. Lời giải sai từ bước 2. D. Lời giải sai từ bước 3. [ads] + Trong hệ tọa độ Oxy cho ba điểm A(1;-4), B(4;5) và C(0;-9). Điểm M di chuyển trên trục Ox. Đặt Q = 2|MA + 2MB| + 3|MB + MC|. Biết giá trị nhỏ nhất của Q có dạng a√b trong đó a, b là các số nguyên dương và a, b < 20. Tính a – b. + Lớp 10D trường Lương Thế Vinh (Hà Nội) có 37 học sinh, trong đó có 17 học sinh thích môn Văn, 19 học sinh thích môn Toán, 9 em không thích môn nào. Số học sinh thích cả hai môn là? + Cho tam giác ABC nhọn có BC = 3a và bán kính đường tròn ngoại tiếp tam giác ABC là R = a√3. Tính số đo góc A. + Cho hệ phương trình mx + 2y = m + 1 và 2x + my = 2m – 1 với m là tham số thực. Tìm tất cả các giá trị của m để hệ phương trình đã cho vô nghiệm.

Nguồn: toanmath.com

Đọc Sách

Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường TH Thực hành Sài Gòn TP HCM
Nội dung Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường TH Thực hành Sài Gòn TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán lớp 10 năm học 2022 – 2023 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 1 Toán lớp 10 năm 2022 – 2023 trường TH Thực hành Sài Gòn – TP HCM : + Trong hình vẽ minh họa bên dưới, một vận động viên bóng chuyền đứng cách phía sau vạch quy định 1 m đang tập phát bóng. Độ cao h (m) của quả bóng sau thời gian t giây tính từ lúc bắt đầu phát bóng được cho bởi hàm số 2 h t 4 9. a) Khi nào quả bóng đạt được độ cao cao nhất (làm tròn kết quả đến chữ số thập phân thứ hai)? b) Quả bóng đến lưới lúc t = 0,6 giây. Liệu bóng có qua lưới không? Hãy giải thích, biết chiều cao lưới là 2,43m. + Một vận động viên A tham gia tập luyện chạy cự li 100 mét. Kết quả sau 20 ngày luyện tập được trình bày theo bảng dưới đây: Thời gian chạy 20 ngày của vận động viên A 14 13 12 15 12 15 16 14 12 18 13 16 12 15 16 14 12 30 28 13 a) Tìm số trung bình, tứ phân vị và mốt của mẫu số liệu trên. b) Huấn luyện viên muốn gửi bài báo cáo thành tích cho ban huấn luyện. Trong các tham số trên, huấn luyện viên chọn tham số nào để phản ánh đúng khả năng của vận động viên A? Giải thích. + Cho hình thoi ABCD có O là giao điểm của hai đường chéo, AB a 2 và 60o BAD. Trên đoạn thẳng AB lấy điểm M sao cho MB MA 2. Gọi N là trung điểm của đoạn thẳng AO. a) Tính tích vô hướng của hai vectơ AM và AN. b) Gọi I là trung điểm của đoạn thẳng MN. Phân tích các vectơ AI CI theo AB và AC. c) Đường thẳng MN cắt BC tại P. Biết PB kPC tìm k.
Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Thủ Khoa Huân TP HCM
Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Thủ Khoa Huân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh; đề thi có đáp án và biểu điểm. Trích dẫn Đề cuối kì 1 Toán lớp 10 năm 2022 – 2023 trường THPT Thủ Khoa Huân – TP HCM : + Mệnh đề nào sau đây đúng? A. Hai vectơ (khác vectơ – không) cùng phương thì chúng cùng hướng. B. Hai vectơ (khác vectơ – không) cùng phương thì giá của chúng song song hoặc trùng nhau. C. Hai vectơ (khác vectơ – không) có giá vuông góc thì cùng phương. D. Hai vectơ (khác vectơ – không) ngược hướng với vectơ thứ ba thì hai vectơ đó cùng phương. + Biểu đồ dưới đây biểu diễn lợi nhuận mà 4 chi nhánh M N P Q của một doanh nghiệp thu được trong năm 2020 và 2021. Hãy kiểm tra xem các phát biểu sau là đúng hay sai: a) Lợi nhuận thu được của các chi nhánh trong năm 2021 đều cao hơn năm 2020. b) So với năm 2020, lợi nhuận của các chi nhánh thu được trong năm 2021 đều tăng trên 10%. + Giả sử một máy bay cứu trợ đang bay theo phương ngang và bắt đầu thả hàng từ độ cao 125 m, lúc đó máy bay đang bay với vận tốc 50 m/s. Để thùng hàng cứu trợ rơi đúng vị trí được chọn, máy bay cần bắt đầu thả hàng từ vị trí nào? Biết rằng nếu chọn gốc toạ độ là hình chiếu trên mặt đất của vị trí hàng cứu trợ bắt đầu được thả, thì toạ độ của hàng cứu trợ được cho bởi hệ 0 2 1 2 x v t y h gt. Trong đó 0 v là vận tốc ban đầu, h là độ cao tính từ khi hàng rời máy bay g 10 m/s2. Lưu ý: Chuyển động này được xem là chuyển động ném ngang.
Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường chuyên Trần Đại Nghĩa TP HCM
Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường chuyên Trần Đại Nghĩa TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT chuyên Trần Đại Nghĩa, thành phố Hồ Chí Minh; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 000. Trích dẫn Đề cuối học kì 1 Toán lớp 10 năm 2022 – 2023 trường chuyên Trần Đại Nghĩa – TP HCM : + Mệnh đề nào sau đây là phủ định của mệnh đề: “Mọi động vật đều di chuyển”. A. Mọi động vật đều không di chuyển. B. Mọi động vật đều đứng yên. C. Có ít nhất một động vật không di chuyển. D. Có ít nhất một động vật di chuyển. + Một ô tô muốn đi từ địa điểm A đến địa điểm B, nhưng giữa A và B là một ngọn núi cao nên ô tô phải đi thành 2 đoạn từ A đến C và từ C đến B. Tam giác ABC (tham khảo hình vẽ) có AB 15km BC 20km và 0 ACB 120. Nếu người ta đào một đường xuyên núi chạy thẳng từ A đến B thì ô tô chạy trên con đường mới này tiết kiệm được số tiền gần nhất là bao nhiêu? Biết trung bình cứ chạy 1km, ô tô tiêu thụ hết 0,3 lít xăng. Giá thành xăng hiện nay là 25000 đồng một lít xăng. + Trong tuần lễ áp dụng chương trình khuyến mãi Black Friday, một cửa hàng luôn có số sản phẩm bán ra của ngày sau hơn ngày trước khoảng 10%. Nhưng trong bảng thống kê sau của 6 ngày áp dụng chương trình khuyến mãi, có một ngày bị nhập sai số sản phẩm được bán ra. Ngày đó là ngày nào?
Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Hùng Vương TP HCM
Nội dung Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Hùng Vương TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra tập trung định kì cuối học kì 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Hùng Vương, thành phố Hồ Chí Minh; đề thi có đáp án và thang điểm. Trích dẫn Đề học kì 1 Toán lớp 10 năm 2022 – 2023 trường THPT Hùng Vương – TP HCM : + Bảng sau đây cho biết sức chứa dành cho khán giả của các sân vận động được sử dụng trong nhiều sự kiện thể thao tại Việt Nam (số liệu gần đúng). SVĐ Thống Nhất Tự do Hòa Xuân Hàng Đẫy Đồng Nai Lạch Tray Thiên Trường Cần Thơ Mỹ Đình Sức chứa: 15 000 16 000 20 500 22 500 30 000 30 000 30 000 30 000 40 190 (Nguồn: Wikipedia). Hãy tìm số Trung bình, Tứ phân vị và Mốt của mẫu số liệu trên. + Một ô tô muốn đi từ A đến C, nhưng giữa A và C là một ngọn núi cao nên ô tô phải đi đường tránh thành hai đoạn từ A đến B rồi từ B đến C, các đoạn đường tạo thành tam giác ABC có độ dài AB = 15 km, BC = 20 km và góc 0 ABC 60. Để rút ngắn khoảng cách và tránh sạt lở núi, người ta dự định làm đường hầm xuyên núi nối thẳng từ A đến C. Hỏi độ dài đường hầm xuyên núi sẽ giảm được bao nhiêu kilômét so với đường cũ? + Khi một quả bóng được đá lên nó sẽ đạt được độ cao nào đó rồi rơi xuống đất. Biết quỹ đạo của quả bóng là một đường parabol trong mặt phẳng toạ độ Oth có phương trình h = at2 + bt + c (a < 0), trong đó t là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên và h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1m và sau 1 giây thì nó đạt được độ cao 6,5m, sau 4 giây nó đạt độ cao 5m. Hãy xác định độ cao cao nhất mà quả bóng đã đạt được?