Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 10 lần 1 năm 2022 - 2023 trường THPT Yên Lạc - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát kiến thức môn Toán 10 lần 1 năm học 2022 – 2023 trường THPT Yên Lạc, tỉnh Vĩnh Phúc; đề thi mã đề 103 được biên soạn theo hình thức 100% trắc nghiệm, đề gồm 04 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án. Trích dẫn Đề khảo sát Toán 10 lần 1 năm 2022 – 2023 trường THPT Yên Lạc – Vĩnh Phúc : + Một công ty sản xuất bao bì cần sản xuất 3 loại hộp giấy X, Y, Z từ những tấm bìa giống nhau để đựng ba loại sản phẩm khác nhau. Mỗi tấm bìa có hai cách cắt khác nhau: Cách thứ nhất cắt được 3 hộp X, 1 hộp Y và 6 hộp Z. Cách thứ hai cắt được 2 hộp X, 3 hộp Y và 1 hộp Z. Theo kế hoạch, số hộp mỗi loại X và Z tối thiểu là 900 hộp; số hộp loại Y tối thiểu là 1000 hộp. Tìm phương án sao cho tổng số tấm bìa phải dùng là ít nhất? A. Cắt theo cách một 100 tấm, cắt theo cách hai 300 tấm. B. Cắt theo cách một 150 tấm, cắt theo cách hai 250 tấm. C. Cắt theo cách một 250 tấm, cắt theo cách hai 100 tấm. D. Cắt theo cách một 160 tấm, cắt theo cách hai 220 tấm. + Thống kê điểm kiểm tra giữa kì ba môn Toán, Lý, Hóa của 41 học sinh lớp 10A, có 23 bạn đạt điểm 10 môn Toán, 20 bạn đạt điểm 10 môn Lý, 21 bạn đạt điểm 10 môn Hó a. Có 7 em không đạt điểm 10 môn nào và 5 em đạt điểm 10 cả ba môn. Hỏi có bao nhiêu em đạt điểm 10 đúng hai trong ba môn Toán, Lý, Hóa? + Một cơ sở dùng không quá 10kg gạo và 3kg thịt để gói hai loại bánh trưng: Bánh trưng vuông và bánh trưng tày. Mỗi chiếc bánh trưng vuông cần 0,6 kg gạo và 0,2 kg thịt. Mỗi bánh trưng tày cần 0,5kg gạo và 0,15kg thịt. Nếu mỗi ngày cơ sở đó gói x chiếc bánh trưng vuông và y chiếc bánh trưng tày thì x, y phải thỏa mãn hệ bất phương trình nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia lần 1 lớp 10 môn Toán trường THPT Yên Phong 1 Bắc Ninh
Nội dung Đề thi thử THPT Quốc gia lần 1 lớp 10 môn Toán trường THPT Yên Phong 1 Bắc Ninh Bản PDF Đề thi thử THPT Quốc gia lần 1 môn Toán lớp 10 trường THPT Yên Phong 1 – Bắc Ninh mã đề 132 gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi thử có đáp án . Theo như dự kiến của Bộ Giáo dục và Đào tạo, kỳ thi THPT Quốc gia 2019 sẽ bao gồm  cả chương trình Toán lớp 10, 11 và 12, do đó, nhiều trường THPT trên toàn quốc đã sớm tổ các các đợt thi thử THPT Quốc gia môn Toán dành cho học sinh lớp 10, nhằm giúp các em có điều kiện rèn luyện thường xuyên và làm quen với hình thức, cấu trúc đề thi. Trích dẫn đề thi thử Toán lớp 10 : + Một của hàng buôn giày nhập một đôi với giá là 40 đôla. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x đôla thì mỗi tháng khách hàng sẽ mua (120 – x) đôi. Hỏi của hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất? [ads] + Một miếng giấy hình tam giác ABC diện tích S có I là trung điểm BC và O là trung điểm của AI. Cắt miếng giấy theo một đường thẳng qua O, đường thẳng này đi qua M, N lần lượt trên các cạnh AB, AC. Khi đó diện tích miếng giấy chứa điểm A có diện tích thuộc đoạn? + Cho tam giác ABC, biết |AB + AC| = |AB – AC|. Mệnh đề nào sau đây đúng? A. Tam giác ABC vuông tại A. B. Tam giác ABC vuông tại B. C. Tam giác ABC vuông tại C. D. Tam giác ABC cân tại A. File WORD (dành cho quý thầy, cô):
Đề thi KSCL lớp 10 môn Toán lần 2 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc
Nội dung Đề thi KSCL lớp 10 môn Toán lần 2 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc Bản PDF Đề thi KSCL Toán lớp 10 lần 2 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 1 trang với 10 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi KSCL Toán lớp 10 : + Cho hình vuông ABCD cạnh a, trên cạnh AC lấy điểm M sao cho AM = AC/4. Gọi N là trung điểm DC. Chứng minh rằng tam giác BMN vuông cân. + Trên hệ trục Oxy cho các điểm A(1;2); B(4;0); C(3;-2). Chứng minh rằng 3 điểm A, B, C lập thành một tam giác. Tính diện tích tam giác ABC. [ads] + Cho tam giác ABC có trọng tâm G. Hãy biểu diễn véctơ AG qua các véctơ AB; AC. + Tìm tất cả các giá trị của tham số m để phương trình x^2 – 2(m + 1)x + m^2 – 2m = 0 có hai nghiệm x1, x2 sao cho: |x1 – x2| = 6. + Xác định a, b để đồ thị hàm số y = ax + b đi qua 2 điểm M(0;-2), N(2;4).
Đề thi KSCL lớp 10 môn Toán lần 1 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc
Nội dung Đề thi KSCL lớp 10 môn Toán lần 1 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc Bản PDF Đề thi KSCL Toán lớp 10 lần 1 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 10 câu hỏi tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong một cuộc điều tra dân số, báo cáo dân số của tỉnh X là 2615473 người ± 300 người. Viết số quy tròn của số gần đúng 2615473. + Chiều cao của một cây cổ thụ là 39,73 m ± 0,2 m. Viết số quy tròn của số gần đúng 39,73. [ads] + Cho hai tập hợp A = {1; 2; 3; 4; 5}, B = {1; 2; 3; 6}. Tìm tất cả các tập hợp X sao cho X ⊂ A và X ⊂ B. + Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh : vtAD + vtBC = 2.vtMN. + Chứng minh rằng ít nhất 1 trong 3 phương trình bậc hai sau đây có nghiệm: ax^2 + 2bx + c = 0, bx^2 + 2cx + a = 0, cx^2 + 2ax + b = 0 (x là ẩn).
Đề thi khảo sát chuyên đề lớp 10 môn Toán lần 1 năm học 2017 2018 trường THPT Nguyễn Thị Giang Vĩnh Phúc
Nội dung Đề thi khảo sát chuyên đề lớp 10 môn Toán lần 1 năm học 2017 2018 trường THPT Nguyễn Thị Giang Vĩnh Phúc Bản PDF Đề thi khảo sát chuyên đề Toán lớp 10 lần 1 năm học 2017 – 2018 trường THPT Nguyễn Thị Giang – Vĩnh Phúc gồm 6 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Nếu a chia hết cho 9 thì a chia hết cho 3 B. Nếu em chăm chỉ thì em thành công C. Nếu a ≥ b thì a^2 ≥ b^2 D. Nếu một tam giác có một góc bằng 60 độ thì tam giác đó là đều [ads] + Trong các khẳng định sau, khẳng định nào đúng: A. Hai vectơ cùng phương với vectơ thứ ba thì cùng phương B. Hai vectơ cùng phương với vectơ thứ ba thì cùng hướng C. Hai vectơ cùng phương với vectơ thứ ba khác vt0 thì cùng phương D. Hai vectơ cùng hướng với vectơ thứ ba thì cùng hướng + Mệnh đề “∃x ∈ R: x^2 = 3” khẳng định rằng: A. Có ít nhất 1 số thực mà bình phương của nó bằng 3 B. Nếu x là số thực thì x^2 = 3 C. Chỉ có 1 số thực có bình phương bằng 3 D. Bình phương của mỗi số thực bằng 3 File WORD (dành cho quý thầy, cô):