Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG Toán 9 năm 2020 - 2021 phòng GDĐT Nha Trang - Khánh Hòa

Ngày … tháng 09 năm 2020, phòng Giáo dục và Đào tạo thành phố Nha Trang, tỉnh Khánh Hòa tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 9 năm học 2020 – 2021. Đề chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Nha Trang – Khánh Hòa gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Nha Trang – Khánh Hòa : + Tìm tất cả các số chính phương gồm 4 chữ số, biết rằng khi thêm 1 đơn vị vào chữ số hàng nghìn, thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục và thêm 3 đơn vị vào chữ số hàng đơn vị, ta vẫn được một số chính phương. + Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF. a) Chứng minh tam giác EDF vuông cân. b) Gọi O là giao điểm của AC và BD; I là trung điểm của EF. Chứng minh O, C, I thẳng hàng. c) Gọi M, N lần lượt là hai điểm di động trên các đoạn thẳng AB, AD sao cho BM = AN (M không trùng với A, B). Xác định vị trí của M, N để diện tích tứ giác BMND nhỏ nhất. + Trong mặt phẳng tọa độ Oxy, cho 5 điểm có tọa độ là các số nguyên. Chứng minh rằng có ít nhất một trung điểm của đoạn thẳng tạo thành từ 5 điểm đã cho có tọa độ là các số nguyên (trong mặt phẳng tọa độ Oxy, tọa độ trung điểm bằng trung bình cộng các tọa độ tương ứng của hai đầu đoạn thẳng).

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương. Trích dẫn Đề thi học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Bình Dương : + Cho một mảnh đất hình vuông, chiều dài mỗi cạnh là 1000m. Trên mảnh đất đã trồng 4500 cây ăn trái các loại, cây lớn nhất có đường kính 0,5m. Người ta muốn xây dựng các căn nhà nghỉ dưỡng trên mảnh đất này để làm khu du lịch sinh thái. Hãy chứng minh rằng người ta có thể xây dựng được ít nhất 60 căn nhà nghỉ dưỡng trên mảnh đất (với diện tích mỗi căn nhà là 200m2) mà không phải chặt đi một cây ăn trái nào đã trồng trên mảnh đất. + Cho đường tròn tâm O đường kính AB (A, B cố định). Lấy hai điểm M, N lần lượt thuộc hai nửa đối nhau của đường tròn (O) sao cho góc MAN luôn bằng 60° (M khác B; N khác B). Đường thẳng BN cắt tia AM tại E, đường thẳng BM cắt tia AN tại F. a) Tính tỉ số EF AB. b) Khi tam giác AMN đều, gọi C là điểm di động trên cung nhỏ AN (C khác A; C khác N). Đường thẳng qua M và vuông góc với AC cắt đường thẳng NC tại D. Xác định vị trí của điểm C để diện tích tam giác MCD là lớn nhất. + Cho tấm bìa hình tam giác ABC có trọng tâm G. Gấp tấm bìa theo đường EF sao cho đỉnh C trùng với trọng tâm G (E, F lần lượt nằm trên hai cạnh CA, CB). Khi đó, chứng minh rằng: AC BC EC FC 6.
Đề thi chọn học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán cấp THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Yên Bái : + Cho đường thẳng (d): y = (m2 – 5m + 8)x – m + 2 với m là tham số thực. Tìm tất cả các giá trị của m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A và B sao cho OB = 4OA. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao BE, CF cắt nhau tại H. Các đường thẳng BE, CF lần lượt cắt đường tròn (O) tại giao điểm thứ hai là P, Q (P khác B, Q khác C). Tiếp tuyến của đường tròn (O) tại B, C cắt đường thẳng EF lần lượt tại M, N. a) Chứng minh rằng AEHF là một tứ giác nội tiếp và AH = AP = AQ. b) Chứng minh rằng tam giác NEC cân tại N. c) Giả sử NP cắt đường tròn (O) tại K. Chứng minh rằng NE2 = NK.NP và ba điểm M, Q, K thẳng hàng. + Trên một khu rừng đủ rộng người ta trồng nhiều cây quế con, xem các gốc cây quế là các điểm (đường kính gốc cây không đáng kể). Người ta trồng cây sao cho các tam giác có đỉnh là các điểm tạo bởi gốc cây quế đều có diện tích không quá 500m2. Chứng minh rằng tồn tại một tam giác có diện tích không quá 2024m2 chứa tất cá các cây quế này.
Đề thi HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Tân Uyên - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Tân Uyên, tỉnh Lai Châu; kỳ thi được diễn ra vào thứ Sáu ngày 26 tháng 01 năm 2024. Trích dẫn Đề thi HSG Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Tân Uyên – Lai Châu : + Tìm nghiệm nguyên x, y của phương trình (x − y)(2x + y + 1) + 9y = 22. + Cho góc xOy có số đo bằng 60°. Đường tròn có tâm K nằm trong góc xOy tiếp xúc với tia Ox tại M và tiếp xúc với tia Oy tại N. Trên tia Ox lấy điểm P sao cho OP = 3OM. Tiếp tuyến của đường tròn tâm K đi qua P và cắt tia Oy tại Q (Q khác O). Đường thẳng PK cắt đường thẳng MN ở E. Đường thẳng QK cắt đường thẳng MN ở F. a) Chứng minh OK vuông góc với MN. b) Chứng minh ME.PQ = KQ.PE. + Cho x, y, z là các số dương thỏa mãn x + y + z = 2024. Tìm giá trị lớn nhất của biểu thức A.
Đề thi học sinh giỏi Toán 9 năm 2023 - 2024 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thành phố năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào ngày 21 tháng 01 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2023 – 2024 sở GD&ĐT Hà Nội : + Cho ba số nguyên a; b; c thỏa mãn a C b C c và ab C bc C ca đều chia hết cho 8. Chứng minh rằng abc chia hết cho 64. Chứng minh rằng không tồn tại các số nguyên x; y lớn hơn 1 sao cho x C y y C 1 1 chia hết cho x. + Cho tam giác ABC nội tiếp đường tròn O; có H là trực tâm. Gọi O0 là điểm đối xứng với điểm O qua đường thẳng BC. Đường thẳng đi qua điểm H vuông góc với đường thẳng HO0 cắt các đường thẳng AB và AC theo thứ tự tại M; N. Gọi I là tâm của đường tròn ngoại tiếp tam giác AMN. a) Chứng minh rằng O0 là tâm đường tròn ngoại tiếp tam giác BHC. b) Chứng minh rằng ba điểm A; H; I thẳng hàng. c) Gọi P là giao điểm thứ hai của đường thẳng AH và đường tròn OI Q là giao điểm của hai đường thẳng OP và BC. Đường tròn ngoại tiếp tam giác AMN cắt đường tròn O tại điểm thứ hai R. Chứng minh rằng đường thẳng QR song song với đường thẳng OI. + Xét số nguyên n > 100 thỏa mãn tồn tại tập hợp S gồm n số thực dương sao cho với mỗi phần tử x của tập S đều tồn tại 100 phần tử khác x của tập S có tích bằng x. Hỏi n nhỏ nhất bằng nhiêu?