Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường THPT Quế Võ 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT Quế Võ 1, tỉnh Bắc Ninh. Đề thi được biên soạn theo cấu trúc định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: Phần I. Câu trắc nghiệm nhiều phương án lựa chọn; Phần II. Câu trắc nghiệm đúng sai; Phần III. Câu trắc nghiệm trả lời ngắn. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường THPT Quế Võ 1 – Bắc Ninh : + Nhiệt độ ngoài trời T (tính bằng C) vào thời điểm t giờ (0 24 t) trong một ngày ở một bảo tàng tượng Sáp tính bằng công thức 5 20 4sin 12 6 t T. Để bảo quản tượng Sáp, hệ thống điều hòa sẽ tự động bật khi nhiệt độ ngoài trời từ 20 C trở lên. Biết rằng, trong 1 ngày hệ thống điều hòa sẽ không bật trong khoảng a b c d (tính theo đơn vị giờ) ta có. + Hai mái nhà trong hình vẽ dưới đây là hai hình chữ nhật. Biết rằng AA song song với mặt đất phẳng, AA m AB m AC m BC m 12 và so với mặt đất điểm B ở độ cao hơn điểm C là 0,5m. Gọi là góc phẳng nhị diện tạo bởi hai nửa mặt phẳng tương ứng chứa hai mái nhà bằng là góc giữa mặt phẳng chứa mái nhà phía trước và mặt đất. Các mệnh đề sau đúng hay sai? + Bạn An chọn ngẫu nhiên 3 số phân biệt trong tập hợp 123456789 và sắp xếp chúng theo thứ tự giảm dần để tạo thành một số gồm ba chữ số. Bạn Bình chọn ngẫu nhiên 3 số phân biệt trong tập hợp 12345678 và sắp xếp chúng theo thứ tự giảm dần để tạo thành một số gồm ba chữ số. Tìm xác suất sao cho số của An lớn hơn số của Bình (làm tròn đến hàng phần trăm).

Nguồn: toanmath.com

Đọc Sách

Đề chọn HSG lớp 11 môn Toán vòng 1 năm 2020 2021 trường THPT Trần Nguyên Hãn Hải Phòng
Nội dung Đề chọn HSG lớp 11 môn Toán vòng 1 năm 2020 2021 trường THPT Trần Nguyên Hãn Hải Phòng Bản PDF Đề chọn HSG Toán lớp 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn HSG Toán lớp 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Trong mặt phẳng Oxy, cho hình bình hành ABCD, hình chiếu của điểm D lên AB, BC lần lượt là M(-2;2), N(2;-2). Biết rằng đường thẳng DB có phương trình là 3x – 5y + 1 = 0 và hoành độ điểm B lớn hơn 0. Tìm tọa độ điểm B. + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 lập được bao nhiêu số có 4 chữ số đôi một khác nhau và chia hết cho 11 đồng thời tổng của 4 chữ số của nó cũng chia hết cho 11. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, M là trung điểm của SA và E là trung điểm của SB; P thuộc cạnh SC sao cho SC = 3SP. 1) Dựng giao điểm của DB với mặt phẳng (MPE). 2) Gọi N là một điểm thuộc cạnh SB, mặt phẳng (MNP) cắt SD tại Q. Chứng minh SB/SN + SD/SQ = 5. File WORD (dành cho quý thầy, cô):
Đề khảo sát học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường THPT Quế Võ 1 Bắc Ninh
Nội dung Đề khảo sát học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường THPT Quế Võ 1 Bắc Ninh Bản PDF Đề khảo sát học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề khảo sát học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh : + Nhà anh A muốn khoan một cái giếng sâu 20 mét dùng để lấy nước cho sinh hoạt gia đình. Có hai cơ sở khoan giếng tính chi phí như sau: Cơ sở I: Mét thứ nhất 200 nghìn đồng và kể từ mét thứ hai trở đi, giá của mỗi mét tăng thêm 60 nghìn đồng so với giá của mỗi mét trước đó. Cơ sở II: Mét thứ nhất 10 nghìn đồng và kể từ mét thứ hai trở đi, giá của mỗi mét gấp 2 lần so với giá của mỗi mét trước đó.Hỏi gia đình anh A để tiết kiệm tiền thì nên chọn cơ sở nào để thuê, biết rằng hai cơ sở trên có chất lượng khoan là như nhau. + Cho hình lăng trụ tứ giác ABCD.A1B1C1D1, mặt phẳng (a) thay đổi và song song với hai đáy của lăng trụ lần lượt cắt các đoạn thẳng AB1, BC1, CD1, DA1 tại M, N, P, Q. Hãy xác định vị trí của mặt phẳng (a) để tứ giác MNPQ có diện tích nhỏ nhất. + Cho đa giác đều A1A2 … A2020 nội tiếp đường tròn tâm O, chọn ngẫu nhiên 4 đỉnh bất kỳ của đa giác đó. Tính xác suất để nhận được một tứ giác có đúng một cạnh là cạnh của đa giác. File WORD (dành cho quý thầy, cô):
Đề chọn HSG lớp 11 môn Toán cấp trường năm 2019 2020 trường THPT chuyên Vĩnh Phúc
Nội dung Đề chọn HSG lớp 11 môn Toán cấp trường năm 2019 2020 trường THPT chuyên Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề chọn HSG Toán lớp 11 cấp trường năm 2019 – 2020 trường THPT chuyên Vĩnh Phúc; đề gồm 01 trang với 05 bài toán dạng đề tự luận, thời gian làm bài thi 180 phút. Trích dẫn đề chọn HSG Toán lớp 11 cấp trường năm 2019 – 2020 trường THPT chuyên Vĩnh Phúc : + Cho hai số nguyên a và b. Chứng minh rằng nếu a^5 ≡ b^5 (mod 97) thì a ≡ b (mod 97). + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Gọi I là tâm đường tròn nội tiếp tam giác. L, M, N lần lượt là các giao điểm thứ hai của AI, BI, CI với (O). Một đường tròn (w) thay đổi luôn đi qua I, L và cắt cạnh BC tại E, F (E nằm giữa B và F). Các đường thẳng LE, LF cắt (O) tại điểm P, Q. [ads] a) Chứng minh rằng tứ giác EFQP nội tiếp và đường thẳng PQ luôn đi qua một điểm cố định khi đường tròn (w) thay đổi. b) Đường thẳng PQ cắt AB, AC lần lượt tại H, K. Chứng minh rằng NH và MK cắt nhau tại một điểm nằm trên đường tròn (w). + Cho m ≤ n là hai số nguyên dương và một bảng có kích thước m x n gồm mn ô vuông đơn vị. Mỗi ô vuông có không quá một con kiến. Biết rằng với mỗi số nguyên dương k thuộc tập hợp {1, 2, 3, …, 78}, tồn tại một hàng hoặc một cột trong bảng có đúng k con kiến. a) Tìm giá trị nhỏ nhất có thể của m + n. b) Tìm giá trị nhỏ nhất có thể của số con kiến trên bảng đã cho.