Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 lần 4 năm 2019 - 2020 trường THCS Trưng Vương - Hà Nội

Nhằm chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán do sở GD&ĐT Hà Nội tổ chức, sáng thứ Ba ngày 07 tháng 07 năm 2020, trường THCS Trưng Vương, quận Hoàn Kiếm, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2019 – 2020 lần thi thứ tư. Đề khảo sát Toán 9 lần 4 năm 2019 – 2020 trường THCS Trưng Vương – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 90 phút, đề thi có cấu trúc bám sát đề tuyển sinh vào lớp 10 môn Toán của sở GD&ĐT Hà Nội những năm gần đây. Trích dẫn đề khảo sát Toán 9 lần 4 năm 2019 – 2020 trường THCS Trưng Vương – Hà Nội : + Cho một số tự nhiên có hai chữ số. Biết hiệu của chữ số hàng chục và chữ số hàng đơn vị là 2, còn tổng các nghịch đảo của chữ số hàng chục và chữ số hàng đơn vị là 7/24. Tìm số có hai chữ số đó. [ads] + Để đo đường kính phần dưới của một chiếc hồ lô, ta dùng một đoạn dây quấn vừa đủ một vòng quanh đường tròn lớn và đo độ dài đoạn dây đó được 145 cm. Hỏi phần dưới của chiếc hồ lô đó có đường kính là bao nhiêu centimet? (Lấy pi = 3,14 và làm tròn kết quả đến hai chữ số sau dấu phẩy). + Trong mặt phẳng Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = 2(m + 1)x – m^2 – 2. a) Tìm m để (d) cắt (P) tại hai điểm A và B phân biệt. b) Gọi x1, x2 lần lượt là hoành độ của điểm A và B. Tìm m để x1^2 + x1x2 + 2 = 3×1 + x2.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 2 năm 2023 - 2024 phòng GDĐT Hà Trung - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 2 năm 2023 – 2024 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho phương trình 2 x m xm (2) 1 0 với m là tham số a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m b) Gọi 1 2 x là hai nghiệm phân biệt của phương trình. Tìm m để 2 x 6. + Cho tam giác ABC (AB AC) nội tiếp đường tròn tâm O. M là điểm nằm trên cung BC không chứa điểm A. Gọi D E F lần lượt là hình chiếu của M trên BC CA AB. a) Chứng minh bốn điểm M B D F cùng thuộc một đường tròn b) Chứng minh D E F thẳng hàng. c) Chứng minh BC AC AB MD ME MF. + Cho hai hàm số 2 Pyx và (d y xm) 2 3 với m là tham số. Tìm m để đường thẳng (d) đi qua điểm A thuộc (P) có hoành độ bằng 2.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Ba Đình – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Để trang trí cho gian hàng hội chợ xuân, một lớp học dự định gấp 600 con hạc giấy trong một thời gian đã định. Thực tế các bạn nam đã làm vượt mức 18%, các bạn nữ đã làm vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 con hạc giấy. Hỏi số hạc giấy mỗi đội nam, nữ của lớp phải làm theo kế hoạch? + Một lọ hoa hình trụ có đường kính đáy là 22 cm, chiều cao 45 cm. Người ta phủ một lớp men bóng mặt ngoài lọ hoa (không kể đáy). Tính diện tích cần phủ men (lấy pi = 3,14). + Cho tam giác ABC có ba góc nhọn AB AC nội tiếp đường tròn O và các đường cao AD BE CF của tam giác cắt nhau tại điểm H. 1) Chứng minh tứ giác BCEF là tứ giác nội tiếp. 2) Kẻ đường kính AK của đường tròn O. Chứng minh BAD KAC. 3) Gọi M và N lần lượt là trung điểm của các đoạn thẳng BC và EF. Hai đường thẳng AN và OM cắt nhau tại điểm I. Chứng minh tam giác ANF đồng dạng với tam giác AMC và IB là tiếp tuyến của O.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Tây Hồ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Sóc Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Sóc Sơn, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Sóc Sơn – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Mẹ An vào cửa hàng mua một chai dầu gội đầu và một chai sữa rửa mặt với tổng số tiền theo giá niêm yết là 360 nghìn đồng. Tuy nhiên, hôm nay cửa hàng có khuyến mại: chai dầu gội đầu giảm 10% còn chai sữa rửa mặt giảm 5% so với giá niêm yết. Do đó mẹ An thanh toán cho cửa hàng khi mua hai sản phẩm trên là 332 nghìn đồng. Tính giá tiền niêm yết tại cửa hàng của chai dầu gội đầu và chai sữa rửa mặt? + Một hộp sữa đặc dạng hình trụ có bán kính đáy là 3,5 cm; chiều cao 8 cm. Hỏi bên trong hộp chứa bao nhiêu mi-li-lít sữa? (Coi thể tích phần vỏ hộp không đáng kể và lấy pi = 3,14). + Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn (O). Kẻ đường cao AH của tam giác ABC và đường kính AK của (O). Gọi E là chân đường vuông góc kẻ từ điểm C đến đường thẳng AK. 1) Chứng minh tứ giác AHEC là tứ giác nội tiếp. 2) Chứng minh: HE // BK và AB.AE = AC.AH. 3) Lấy M là trung điểm của đoạn thẳng BC. Gọi F là chân đường vuông góc kẻ từ điểm B đến đường thẳng AK. Chứng minh rằng M là tâm đường tròn ngoại tiếp HEF.