Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề cách ghi số tự nhiên

Tài liệu gồm 07 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề cách ghi số tự nhiên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Cách ghi số tự nhiên. I. Phương pháp giải: * Cần phân biệt rõ số với chữ số; số chục với chữ số hàng chục; số trăm với chữ số hàng trăm; …. VD: Số 4315. + Các chữ số là 4, 3, 1, 5. + Số chục là 431, chữ số hàng chục là 1. + Số trăm là 43, chữ số hàng trăm là 3. * Mỗi chữ số ở những vị trí khác nhau sẽ có giá trị khác nhau. Riêng chữ số 0 không thể đứng ở vị trí đầu tiên. * Số nhỏ nhất có n chữ số là 1000….000 (n 1 chữ số 0). * Số lớn nhất có n chữ số là 999….99 (n chữ số 9). Dạng 2 . Viết số tự nhiên có m chữ số từ n chữ số cho trước. * Chọn một chữ số trong các chữ số đã cho làm chữ số hàng cao nhất trong số tự nhiên cần viết. * Lần lượt chọn các số còn lại xếp vào các hàng còn lại. * Cứ làm như vậy cho đến khi lập được hết các số. * Chú ý: Chữ số 0 không thể đứng đầu. Dạng 3 . Tính số các số tự nhiên. * Tính số các số có n chữ số cho trước. + Để tính số các chữ số có n chữ số, ta lấy số lớn nhất có n chữ số trừ đi số nhỏ nhất có n chữ số rồi cộng với 1. + Số các số có n chữ số bằng: 999….99 (n chữ số 9) – 1000….000 (n 1 chữ số 0) + 1. * Để đếm các số tự nhiên từ a đến b, hai số kế tiếp cách nhau d đơn vị, ta dùng công thức sau. Dạng 4 . Đọc và viết các số bằng chữ số La Mã. * Dùng bảng số La Mã sau: * Ta có: I, V, X, L, C, D, M có giá trị tương ứng là 1, 5, 10, 50, 100, 500, 1000. * Ta có: IV, IX, XL, XC, CD, CM có giá trị tương ứng 4, 9, 40, 90, 400, 900. + Chữ số thêm vào bên phải là cộng thêm (nhỏ hơn chữ số gốc) và tuyệt đối không được thêm quá 3 lần số.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề bội chung và bội chung nhỏ nhất
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề bội chung và bội chung nhỏ nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Hiểu khái niệm bội chung, bội chung nhỏ nhất của hai hay nhiều số. + Nhận biết được mối quan hệ giữa ước chung lớn nhất và bội chung nhỏ nhất. Kĩ năng: + Biết cách tìm bội chung của hai hay nhiều số bằng cách phân tích các số ra thừa số nguyên tố. + Biết tìm bội chung thông qua tìm bội chung nhỏ nhất. + Tìm được bội chung nhỏ nhất của hai số khi biết ước chung lớn nhất của chúng. + Thực hành vận dụng giải một số dạng toán liên quan đến bội chung và bội chung nhỏ nhất. I. LÍ THUYẾT TRỌNG TÂM 1. Bội chung: Bội chung của hai hay nhiều số là bội của tất cả các số đó. 2. Bội chung nhỏ nhất: Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó. 3. Tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố: Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau: + Bước 1. Phân tích mỗi số ra thừa số nguyên tố. + Bước 2. Chọn ra các thừa số nguyên tố chung và riêng. + Bước 3. Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. 4. Cách tìm bội chung thông qua tìm BCNN: Để tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó. II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm bội chung và bội chung nhỏ nhất của các số cho trước. Dạng 2 : Quan hệ giữa ước chung lớn nhất và bội chung nhỏ nhất. Tích của hai số bằng tích của ƯCLN và BCNN của chúng.
Chuyên đề ước chung và ước chung lớn nhất
Tài liệu gồm 20 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề ước chung và ước chung lớn nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức : + Hiểu được khái niệm ước chung, ước chung lớn nhất, và khái niệm các số nguyên tố cùng nhau. + Nhận biết được giao của hai tập hợp. + Nhận biết được quan hệ giữa ước chung và ước chung lớn nhất. Kĩ năng : + Xác định được ước chung và ước chung lớn nhất của hai hay nhiều số tự nhiên lớn hơn 1. + Biết cách tìm ước chung lớn nhất bằng cách phân tích các số ra thừa số nguyên tố. + Tìm được tập hợp các ước chung của các số đã cho thông qua tìm ước chung lớn nhất của chúng. + Vận dụng giải các dạng toán tìm ước chung và ước chung lớn nhất. + Chứng minh được hai hay nhiều số nguyên tố cùng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm ước chung. Tìm ước chung của hai số a và b: + Bước 1. + Bước 2. Dạng 2 : Tìm ước chung lớn nhất. Tìm ước chung lớn nhất của hai số a và b: – Cách 1: Tìm ƯC(a;b), chọn số lớn nhất trong tập hợp đó. – Cách 2: + Bước 1. Phân tích a và b ra thừa số nguyên tố. + Bước 2. Chọn ra các thừa số nguyên tố chung. + Bước 3. Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN cần tìm. Tìm ƯC(a;b) thông qua ước chung lớn nhất: + Bước 1. Tìm ƯCLN(a;b). + Bước 2. Liệt kê các ước của ƯCLN. Dạng 3 : Bài toán về tập hợp. Giao của hai tập hợp A và B là một tập hợp gồm các phần tử chung của hai tập đó. Dạng 4 : Chứng minh hai hay nhiều số là các số nguyên tố cùng nhau. Chứng minh a và b là hai số nguyên tố cùng nhau: + Bước 1. Giả sử d = ƯC(a;b). Suy ra a d và b d. + Bước 2. Áp dụng tính chất chia hết của một tổng (hiệu) để chứng minh d = 1. Suy ra ƯCLN(a;b) = 1. Kết luận a và b là hai số nguyên tố cùng nhau.
Chuyên đề ước và bội, số nguyên tố và hợp số, phân tích một số ra thừa số nguyên tố
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề ước và bội, số nguyên tố và hợp số, phân tích một số ra thừa số nguyên tố, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Nhận biết được khái niệm ước, bội, số nguyên tố và hợp số. + Nắm được cách phân tích một số ra thừa số nguyên tố. Kĩ năng: + Phân tích được một số tự nhiên bất kì ra thừa số nguyên tố, biết dùng lũy thừa để viết gọn dạng phân tích. + Biết cách xác định tập hợp các ước, các bội của một số tự nhiên. + Nhận biết được một số hoặc một biểu thức là số nguyên tố hay hợp số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Bài toán về ước và bội. + Cách tìm bội của a (a khác 0): Lấy a nhân lần lượt với 0; 1; 2; 3; …. + Cách tìm ước của b (b > 1): Lấy b chia cho các số tự nhiên từ 1 đến b để xét xem b chia hết cho những số nào rồi kết luận. Dạng 2 : Số nguyên tố và hợp số. Dạng 3 : Phân tích một số ra thừa số nguyên tố.
Chuyên đề tính chất chia hết của một tổng, dấu hiệu chia hết cho 2, cho 3, cho 5, cho 9
Tài liệu gồm 19 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất chia hết của một tổng, dấu hiệu chia hết cho 2, cho 3, cho 5, cho 9, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Hiểu quan hệ chia hết, các tính chất chia hết của một tổng, một hiệu. + Nắm được các dấu hiệu chia hết cho 2, cho 3, cho 5 và cho 9. Kĩ năng: + Nhận biết được một biểu thức có chia hết cho một số mà không cần tính giá trị của biểu thức đó. + Sử dụng đúng các kí hiệu chia hết và không chia hết. + Vận dụng thành thạo các dấu hiệu chia hết cho 2, cho 3, cho 5 và cho 9 để xác định một số đã cho có chia hết cho 2, cho 3, cho 5 và cho 9 hay không. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xét tính chia hết hay không chia hết. + Sử dụng dấu hiệu chia hết cho 2, cho 5, cho 3 và cho 9. + Sử dụng tính chất chia hết của tổng, của hiệu. Dạng 2 : Lập các số thỏa mãn điều kiện chia hết từ các số cho trước. + Lập số chia hết cho 2, cần chọn chữ số ở hàng đơn vị là số chẵn (0; 2; 4; 6 hoặc 8). + Lập số chia hết cho 5, cần chọn chữ số ở hàng đơn vị là 0 hoặc 5. + Lập số chia hết cho 3, cần chọn các chữ số sao cho tổng của chúng chia hết cho 3. + Lập số chia hết cho 9, cần chọn các chữ số sao cho tổng của chúng chia hết cho 9. Dạng 3 : Tìm điều kiện để một số chia hết cho một số nào đó. Sử dụng các dấu hiệu chia hết cho 2, cho 3, cho 5, cho 9 và tính chất chia hết của một tổng. Dạng 4 : Chứng minh tính chất chia hết. Cần lưu ý: + Hai số tự nhiên liên tiếp. + Ba số tự nhiên liên tiếp. + Số chẵn. + Số lẻ. + Cấu tạo số.