Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán khối đa diện bằng sơ đồ tư duy - Ngụy Như Thái

Tài liệu gồm 46 trang hướng dẫn phương pháp giải toán khối đa diện bằng sơ đồ tư duy, đây là sáng kiến kinh nghiệm của thầy Ngụy Như Thái (Giáo viên trường THPT An Phước). Thực tế giảng dạy cho thấy môn Toán học trong trường phổ thông là một trong những môn học khó, phần lớn các em học môn Toán rất yếu đặc biệt là hình học không gian, nếu không có những bài giảng và phương pháp dạy môn Hình học phù hợp đối với thế hệ học sinh thì dễ làm cho học sinh thụ động trong việc tiếp thu, cảm nhận. Đã có hiện tượng một số bộ phận học sinh không muốn học Hình học, ngày càng xa rời với giá trị thực tiễn của Hình học. Nhiều giáo viên chưa quan tâm đúng mức đối tượng giáo dục, chưa đặt ra cho mình nhiệm vụ và trách nhiệm nghiên cứu, hiện tượng dùng đồng loạt cùng một cách dạy, một bài giảng cho nhiều lớp, nhiều thế hệ học trò vẫn còn nhiều. Do đó phương pháp ít có tiến bộ mà người giáo viên đã trở thành người cảm nhận, truyền thụ tri thức một chiều, còn học sinh không chủ động trong quá trình lĩnh hội tri thức – kiến thức Hình học làm cho học sinh không thích học môn Hình học. Xuất phát từ mục đích dạy – học phát huy tính tích cực chủ động sáng tạo của học sinh nhằm giúp các em xây dựng các kiến thức, kỹ năng, thái độ học tập cần thiết, kỹ năng tư duy, tổng kết, hệ thống lại những kiến thức, vấn đề cơ bản vừa mới lĩnh hội giúp các em củng cố bước đầu, khắc sâu trọng tâm bài học, thì sơ đồ tư duy là một biểu đồ được sử dụng để thể hiện từ ngữ, ý tưởng, nhiệm vụ hay các mục được liên kết và sắp xếp tỏa tròn quanh từ khóa hay ý trung tâm. Sơ đồ tư duy là một phương pháp đồ họa thể hiện ý tưởng và khái niệm trong các bài học mà giáo viên cần truyền đạt, làm rõ các chủ đề qua đó giúp các em hiểu rõ hơn và nắm vững kiến thức một cách có hệ thống. [ads] Để cho học sinh có hứng thú trong học tập bộ môn Hình học hơn, tôi có một ý tưởng là: Dùng sơ đồ tư duy hệ thống kiến thức chương 1 – Thể tích khối đa diện –Hình học 12 với mong muốn thay đổi cách giảng dạy truyền thụ tri thức một chiều sang cách tiếp cận kiến tạo kiến thức và suy nghĩ. Ý tưởng là sơ đồ tư duy được xây dựng theo quá trình từng bước khi người dạy và người học tương tác với nhau. Vì đây là một hoạt động vừa mang tính phân tích vừa mang tính nghệ thuật nó làm cho học sinh gợi nhớ các kiến thức vừa mới học hoặc đã được học từ trước. Để thực hiện được điều như trên, bản thân tôi xác định phải luôn bám sát các nguồn tư liệu như: chuẩn kiến thức, kĩ năng; sách giáo khoa; sách giáo viên và các sách tham khảo khác. Ngoài ra còn luôn chuẩn bị một hệ thống câu hỏi và bài tập dựa trên mục tiêu của từng bài, từng chương cụ thể, giúp học sinh định hướng và nắm được kiến thức trọng tâm bài học. Thông qua đó học sinh nắm vững kiến thức cũ, lĩnh hội kiến thức mới nhanh hơn.

Nguồn: toanmath.com

Đọc Sách

Bài toán khoảng cách giữa hai đường thẳng chéo nhau
Tài liệu gồm 37 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán khoảng cách giữa hai đường thẳng chéo nhau, được phát triển dựa trên câu 37 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu bài toán khoảng cách giữa hai đường thẳng chéo nhau: A. KIẾN THỨC CẦN NHỚ 1. Khoảng cách giữa điểm và mặt phẳng Khoảng cách giữa một điểm và một mặt phẳng là khoảng cách từ điểm đó tới hình chiếu vuông góc của nó lên mặt phẳng đó. + Khoảng cách từ điểm M bất kì đến mặt phẳng (α) có chứa đường cao của hình chóp, hình lăng trụ. + Khoảng cách từ hình chiếu vuông góc A của đỉnh S đến mặt phẳng bên (α). + Khoảng cách từ điểm bất kì đến mặt phẳng bên. 2. Khoảng cách giữa một đường thẳng và một mặt phẳng song song Khoảng cách giữa một đường thẳng và một mặt phẳng song song là khoảng cách từ một điểm bất kì trên đường thẳng này tới mặt phẳng kia. [ads] 3. Khoảng cách giữa hai mặt phẳng song song Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì trên mặt phẳng này tới mặt phẳng kia. 4. Khoảng cách hai đường thẳng chéo nhau a. Khoảng cách hai đường thẳng chéo nhau là độ dài đoạn vuông góc chung  của hai đường thẳng đó. b. Cách tính khoảng cách giữa hai đường thẳng chéo nhau + Cách 1: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó và mặt phẳng song song với nó, chứa đường thẳng còn lại. + Cách 2: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó. + Cách 3: Dựng và tính độ dài đoạn vuông góc chung của hai đường thẳng chéo nhau a và b. B. BÀI TẬP MẪU C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN
Tính thể tích khối chóp biết góc giữa hai mặt phẳng
Tài liệu gồm 38 trang, hướng dẫn giải bài toán tính thể tích khối chóp biết góc giữa hai mặt phẳng, đây là các bài toán được phát triển dựa trên câu 49 trong đề minh họa THPT Quốc gia môn Toán năm 2020 của Bộ Giáo dục và Đào tạo. Khái quát nội dung tài liệu tính thể tích khối chóp biết góc giữa hai mặt phẳng: A. BÀI TẬP MẪU Đề mẫu : Câu 49: Cho khối chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = a, góc SBA = góc SCA = 90 độ, góc giữa hai mặt phẳng (SAB) và (SAC) bằng 60 độ. Thể tích của khối đã cho bằng? Phương pháp giải : Cách 1 : Xác định góc giữa hai mặt phẳng. 1. Dạng toán: Tính thể tích khối chóp biết góc giữa hai mặt phẳng. 2. Phương pháp:  Tìm đường cao của hình và khai thác được giả thiết góc của đề bài 3. Hướng giải: Bước 1: Tìm đường cao của hình: học sinh phải tìm đường cao bằng cách suy ra từ các quan hệ vuông góc giữa đường với đường để chứng mình được đường vuông góc với mặt, hay phục dựng hình ẩn để xác định đường cao. Bước 2: Để khai thác được giả thiết góc ta thường làm: + Xác định được góc. Trong quá trình xác định góc phải tránh bẫy khi đưa về góc giữa hai đường thẳng cắt nhau nó là góc không tù. + Cần chọn ẩn (là chiều cao hay cạnh đáy nếu giả thiết chưa có) sau đó sử dụng giả thiết góc để tìm ẩn. Có thể sử dụng nhiều phương pháp khác ngoài hai cách truyền thống để tính góc giữa hai mặt bên: Phương pháp khoảng cách, Phương pháp diện tích hai mặt bên. [ads] Cách 2 : Xác định đường cao của hình chóp. 1. Dạng toán: Đây là dạng toán tính thể tích khối chóp có lồng ghép góc giữa hai mặt phẳng. 2. Phương pháp: Sử dụng công thức tính thể tích khối chóp. 3. Hướng giải: Bước 1: Gọi H là chân đường cao kẻ từ S. Khi đó tứ giác ABHC là hình vuông. Bước 2: Xác định góc giữa hai mặt phẳng (SAB) và (SAC) rồi từ đó tính độ dài đường cao SH. Bước 3: Áp dụng công thức tính thể tích khối chóp. B. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN
Chuyên đề khối đa diện
Tài liệu gồm 81 trang được biên soạn bởi thầy giáo Lê Đình Hùng và Nguyễn Văn Vinh, hướng dẫn phương pháp giải toán và tuyển tập trắc nghiệm có đáp án chuyên đề khối đa diện, giúp học sinh học tốt chương trình Hình học 12 chương 1 và ôn thi THPT Quốc gia môn Toán. Khái quát nội dung tài liệu chuyên đề khối đa diện: A – KIẾN THỨC BỔ TRỢ CHO CHUYÊN ĐỀ I. Hình học phẳng. II. Hình học không gian lớp 11: Quan hệ song song, Quan hệ vuông góc, Góc và Khoảng cách. B – CHUYÊN ĐỀ KHỐI ĐA DIỆN BÀI 1 . KHÁI NIỆM VỀ KHỐI ĐA DIỆN. Phương pháp: Nắm vững lý thuyết về hình đa diện, khối đa diện, các phép dời hình và phân chia, lắp ráp các khối đa diện. Ngoài ra ta cần ghi nhớ thêm các kiến thức sau: + Mối liên hệ giữa số cạnh, số đỉnh và số mặt của một hình đa diện bất kỳ. + Hình chóp có số đỉnh bằng số mặt và có số cạnh gấp đôi số cạnh của đáy. + Nếu một khối đa diện chỉ có các mặt là tam giác thì tổng số các mặt là số chẵn. BÀI 2 . KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU. BÀI 3 . THỂ TÍCH CỦA KHỐI ĐA DIỆN. [ads] Phương pháp chung: Có 4 phương pháp để tính thể tích của một khối đa diện: + Phương pháp 1: Tính theo công thức. Trong phương pháp này ta cần phải đi tìm đường cao và diện tích đáy. + Phương pháp 2: Sử dụng công thức tỷ số diện tích. Phương pháp này chỉ được áp dụng cho tứ diện, khi có một mặt phẳng cắt tứ diện theo một giao diện nào đó. + Phương pháp 3: Tính thể tích bằng cách chia nhỏ khối đa diện. Khi khối đa diện ban đầu rất khó xác định được chiều cao hoặc diện tích đáy, ta nên dùng phương pháp này. + Phương pháp 4: Tính thể tích bằng cách mở rộng khối đa diện. Ta có thể mở rộng khối đa diện ban đầu để được một khối đa diện mới dễ tính thể tích hơn. Lưu ý phần khối đa diện được mở rộng phải dễ tính thể tích. Khi đó thể tích khối đa diện ban đầu bằng thể tích khối đa diện lúc sau trừ cho thể tích của khối đa diện được mở rộng. CÁC DẠNG BÀI TẬP VỀ HÌNH CHÓP : + Dạng 1: Hình chóp có cạnh bên vuông góc với đáy. + Dạng 2: Hình chóp có một mặt bên vuông góc với đáy. + Dạng 3: Hình chóp đều. + Dạng 4: Phương pháp tỷ số thể tích. + Dạng 5: Cạnh bên hoặc mặt bên tạo với đáy một góc và một số bài toán khác. + Dạng 6: Các bài toán tính khoảng cách. + Dạng 7: Các bài toán xác định góc. CÁC BÀI TẬP VỀ HÌNH LĂNG TRỤ : + Dạng 1: Các bài toán về lăng trụ đứng. + Dạng 2: Hình lăng trụ xiên.
Trắc nghiệm VD - VDC khối đa diện và thể tích khối đa diện - Đặng Việt Đông
Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Hình học 12 chương 1 – khối đa diện và thể tích khối đa diện, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề khối đa diện và thể tích khối đa diện. Tài liệu trắc nghiệm VD – VDC khối đa diện và thể tích khối đa diện – Đặng Việt Đông gồm 107 trang với các bài tập trắc nghiệm khối đa diện và thể tích khối đa diện ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về khối đa diện và thể tích khối đa diện được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC khối đa diện và thể tích khối đa diện – Đặng Việt Đông: + Dạng toán 1. Thể tích khối chóp. + Dạng toán 2. Thể tích khối lăng trụ. + Dạng toán 3. Tỉ lệ thể tích. + Dạng toán 4. Cực trị thể tích. + Dạng toán 5. Góc và khoảng cách liên quan đến thể tích. + Dạng toán 6. Bài toán ứng dụng thực tế.