Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG lớp 12 môn Toán cấp cơ sở năm học 2018 2019 sở GD và ĐT Điện Biên

Nội dung Đề thi chọn HSG lớp 12 môn Toán cấp cơ sở năm học 2018 2019 sở GD và ĐT Điện Biên Bản PDF Đề thi chọn HSG Toán lớp 12 cấp cơ sở năm học 2018 – 2019 sở GD và ĐT Điện Biên gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 04/12/2018, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn HSG Toán lớp 12 cấp cơ sở năm học 2018 – 2019 sở GD và ĐT Điện Biên : + Cho hình chóp tứ giác đều S.ABCD có AB = a, SA = a√3. Gọi O là giao điểm của AC và BD, G là trọng tâm tam giác SCD. Tính thể tích khối chóp S.OGC. Tính khoảng cách từ G đến mặt phẳng (SBC). Tính cosin góc giữa hai đường thẳng SA và BG. + Trong mặt phẳng tọa độ Oxy cho hai điểm A(0;9), B(3;6). Gọi D là miền nghiệm của hệ phương trình 2x – y + a ≤ 0 và 6x + 3y + 5a ≥ 0. Tìm tất cả các giá trị của a để AB ⊂ D. + Gọi S là tập hợp tất cả các số tự nhiên có 5 chữ số khác nhau được chọn từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. Xác định số phần tử của S. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn là số chẵn.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi lớp 12 môn Toán năm học 2017 2018 trường THPT Đan Phượng Hà Nội
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm học 2017 2018 trường THPT Đan Phượng Hà Nội Bản PDF Đề thi học sinh giỏi môn Toán lớp 12 năm học 2017 – 2018 trường THPT Đan Phượng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho hàm số: y = (x – 1)/2(x + 1) (C). Tìm những điểm M trên (C) sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 4x + y = 0. [ads] + Cho hàm số y = x^3 – 3(m+1)x – 2 với m là tham số. Tìm các giá trị của m để đồ thị hàm số cắt trục Ox tại một điểm. + Cho tam giác ABC vuông tại A, D là một điểm nằm trong tam giác ABC sao cho CD = CA. M là một điểm trên cạnh AB sao cho góc BDM = 1/2.ACD, N là giao điểm của MD và đường cao AH của tam giác ABC. Chứng minh DM = DN. + Cho tam giác ABC cân tại A có AB = AC = a, góc BAC = 120 độ. Điểm S thay đổi trong không gian nhưng luôn nằm về 1 phía của mặt phẳng (ABC) và AS = a, góc SAB = 60 độ. Gọi H là hình chiếu của S trên mặt phẳng (ABC). a) Chứng minh rằng H thuộc đường thẳng cố định. b) Chứng minh rằng khi độ dài SH lớn nhất thì hai mặt phẳng (SAB) và (ABC) vuông góc với nhau và khi đó tính độ dài SC.
Đề thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Thái Nguyên
Nội dung Đề thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Thái Nguyên Bản PDF Đề thi chọn học sinh giỏi cấp tỉnh Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Thái Nguyên gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Kỳ thi diễn ra vào ngày 12/10/2017.
Đề thi chọn HSG cấp tỉnh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hải Dương
Nội dung Đề thi chọn HSG cấp tỉnh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hải Dương Bản PDF Đề thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100.000.000 đồng và dưới nước là 260.000.000 đồng. [ads] + Trong mặt phẳng Oxy, cho đường tròn (I) có hai đường kính AB và MN với A B (1;3), (3; -1). Tiếp tuyến của (I) tại B cắt các đường thẳng AM và AN lần lượt tại E và F. Tìm tọa độ trực tâm H của tam giác MEF sao cho H nằm trên đường thẳng d: x – y + 6 = 0 và có hoành độ dương. + Tìm tất cả các giá trị của m để đồ thị hàm số y = x^3 – 3mx + 1 có hai điểm cực trị A, B sao cho diện tích ΔIAB bằng 8√2.
Đề thi thành lập đội tuyển HSG lớp 12 môn Toán dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận
Nội dung Đề thi thành lập đội tuyển HSG lớp 12 môn Toán dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận Bản PDF Đề thi thành lập đội tuyển HSG Toán lớp 12 THPT dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 4 bài toán tự luận, có lời giải chi tiết.