Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử lớp 11 môn Toán THPT Quốc gia 2020 lần 1 trường Ngô Quyền – Hải Phòng

Nội dung Đề thi thử lớp 11 môn Toán THPT Quốc gia 2020 lần 1 trường Ngô Quyền – Hải Phòng Bản PDF Chủ Nhật ngày 29 tháng 12 năm 2019, trường THPT Ngô Quyền – Hải Phòng tổ chức kỳ thi thử Trung học Phổ thông Quốc gia năm 2020 môn Toán lớp 11 lần thứ nhất năm học 2019 – 2020. Đề thi thử Toán lớp 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền – Hải Phòng mã đề 111 gồm có 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi. Trích dẫn đề thi thử Toán lớp 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền – Hải Phòng : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, O là giao điểm hai đường chéo AC và BD. Gọi I, J, K lần lượt là trung điểm các cạnh BC, AD, SC và H là một điểm trên cạnh BC, H không trùng với B. Gọi d là giao tuyến của hai mặt phẳng (SAH) và (IJK). Tìm mệnh đề sai trong các mệnh đề sau: A. d đi qua giao điểm của AH và KI đồng thời d song song với KO. B. d đi qua giao điểm của AH và IJ đồng thời d song song với SA. C. d đi qua giao điểm của AH và IJ đồng thời d song song với KO. D. d đi qua giao điểm của SH và IK đồng thời d song song với SA. + Mệnh đề nào sau đây đúng? A. Qua ba điểm xác định một và chỉ một mặt phẳng. B. Qua ba điểm phân biệt không thẳng hàng xác định một và chỉ một mặt phẳng. C. Qua ba điểm phân biệt xác định một và chỉ một mặt phẳng. D. Qua ba điểm phân biệt không thẳng hàng xác định hai mặt phẳng phân biệt. [ads] + Một nhân viên được nhận vào làm việc ở tập đoàn S với mức lương 10.000.000 VND/tháng và thỏa thuận nếu hoàn thành tốt công việc thì sau một quý (3 tháng) công ty sẽ tăng cho anh thêm 500.000 VND/tháng. Hỏi sau ít nhất bao nhiêu năm thì lương của anh ta sẽ được trên 20.000.000 VND/tháng (giả thiết: nhân viên đó luôn hoàn thành tốt công việc). + Một dãy phố có bảy cửa hàng bán đồ lưu niệm. Có bảy khách hàng, mỗi người chọn vào một trong bảy cửa hàng đó một cách ngẫu nhiên. Tính xác suất để một cửa hàng có một khách vào, một cửa hàng có hai khách vào, một cửa hàng có bốn khách vào và bốn cửa hàng còn lại không có người khách nào vào. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy nhỏ AB = n, đáy lớn CD = m (m, n là các số thực dương, m > n). Các cạnh bên thỏa mãn SA = SB, SC = SD. Gọi O là giao điểm hai đường chéo AC và BD. Lấy điểm I trên đoạn SO sao cho IS/IO = k. Gọi (alpha) là mặt phẳng đi qua AI và song song với CD. Tìm điều kiện của k để thiết diện của hình chóp S.ABCD với mặt phẳng (alpha) là một hình chữ nhật.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra chuyên đề Toán 11 lần 1 năm 2019 2020 trường Quang Hà Vĩnh Phúc
Ngày … tháng 11 năm 2019, trường THPT Quang Hà – Vĩnh Phúc tổ chức kỳ thi kiểm tra chuyên đề môn Toán lớp 11 lần thứ nhất năm học 2019 – 2020, nhằm khảo sát chất lượng Toán 11 giai đoạn giữa học kỳ 1. Đề kiểm tra chuyên đề Toán 11 lần 1 năm học 2019 – 2020 trường THPT Quang Hà – Vĩnh Phúc gồm có 02 mã đề: đề số 01 và đề số 02, đề gồm 01 trang với 07 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra chuyên đề Toán 11 lần 1 năm 2019 – 2020 trường Quang Hà – Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;3), B(2;-1), đường thẳng d có phương trình: 2x – 3y + 5 = 0 và vectơ v = (1;−3). a) Tìm tọa độ điểm A’ là ảnh của A qua phép tịnh tiến theo vectơ v. b) Viết phương trình ∆ là ảnh của d qua phép tịnh tiến theo vectơ v. c) Viết phương trình đường tròn (C) có tâm A và đi qua B. Viết phương trình đường tròn (C’) là ảnh của (C) qua phép quay tâm O(0;0) góc quay 90 độ. [ads] + Xác định m để phương trình cos4x = (cos3x)^2 + m(sinx)^2 có nghiệm thuộc (0;pi/12). + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(3;2), B(1;4), C(1;1). Gọi M, N, P lần lượt là chân các đường cao kẻ từ A, B, C của tam giác ABC. Giả sử M’, N’, P’ lần lượt là ảnh của M, N, P qua phép tịnh tiến theo vectơ AB. Tìm tọa độ tâm đường tròn nội tiếp tam giác M’N’P’.
Đề thi KSCL lần 1 Toán 11 năm 2019 - 2020 trường Thanh Miện - Hải Dương
Chủ Nhật ngày 10 tháng 11 năm 2019, trường THPT Thanh Miện, tỉnh Hải Dương tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán 11 năm học 2019 – 2020, nhằm kiểm tra kiến thức Toán 11 định kỳ. Đề thi KSCL lần 1 Toán 11 năm học 2019 – 2020 trường THPT Thanh Miện – Hải Dương có mã đề 131, đề gồm 05 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian làm bài 90 phút (không kể thời gian giao đề), đề thi có đáp án. Trích dẫn đề thi KSCL lần 1 Toán 11 năm 2019 – 2020 trường Thanh Miện – Hải Dương : + Một trường đại học tổ chức thi vấn đáp tiếng anh cho sinh viên của trường. Có 15 đề thi vấn đáp, trong đó 6 đề có nội dung về giáo dục, 4 đề có nội dung về kinh tế và 5 đề có nội dung về thể thao. Một sinh viên rút thăm bất kỳ một đề để trả lời. Tìm xác suất để sinh viên đó rút được đề có nội dung về giáo dục? + Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt. Trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm. Xác xuất để ba điểm được chọn tạo thành một tam giác là? [ads] + Cho tập A có n phần tử (n ∈ N*), điều nào sau đây là sai? A. Số các chỉnh hợp chập k của n phần tử là nAk = n!/(n – k)! với k ≤ n, k thuộc N*. B. Số các tổ hợp chập k của n phần tử là nCk = n!/k!(n – k)! với k ≤ n, k thuộc N. C. Số các hoán vị của (n + 1) phần tử là 1.2.3…(n – 2)(n – 1)n. D. Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử. Vì vậy Pn = nAn. + Trường THPT Thanh Miện, tỉnh Hải Dương có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh? + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;6), B(-1;-4). Gọi C, D lần lượt là ảnh của A và B qua phép tịnh tiến theo vectơ v = (1;5). Tìm khẳng định đúng: A. ABCD là hình thoi. B. ABCD là hình bình hành. C. Bốn điểm A, B, C, D thẳng hàng. D. ABCD là hình thang.
Đề khảo sát chất lượng Toán 11 lần 1 năm 2019 - 2020 trường Yên Lạc - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 11 đề khảo sát chất lượng Toán 11 lần 1 năm học 2019 – 2020 trường THPT Yên Lạc – Vĩnh Phúc, đề thi có mã đề 507 gồm 04 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát chất lượng Toán 11 lần 1 năm 2019 – 2020 trường Yên Lạc – Vĩnh Phúc : + Biết rằng N là ảnh của M qua phép đối xứng tâm O. Phát biểu nào sau đây là đúng? A. Hoành độ của M và N đối nhau, tung độ của M và N đối nhau. B. Hoành độ của M và N đối nhau, tung độ của M và N bằng nhau. C. Hoành độ của M và N bằng nhau, tung độ của M và N đối nhau. D. Hoành độ của M và N bằng nhau, tung độ của M và N bằng nhau. [ads] + Ba bạn A, B, C mỗi bạn viết ngẫu nhiên một số tự nhiên thuộc đoạn [1;16] được kí hiệu theo thứ tự là a, b, c rồi lập phương trình bậc hai ax^2 + bx + c = 0. Số phương trình bậc hai lập được có nghiệm kép là? + Trong mặt phẳng Oxy, cho đường tròn (C): x^2 + y^2 – 2x – 6y + 6 = 0. Đường thẳng (d) đi qua M(2;3) cắt (C) tại hai điểm A, B. Tiếp tuyến của đường tròn tại A và B cắt nhau tại E. Biết S_AEB = 32/5 và phương trình đường thẳng (d) có dạng ax – y + c = 0 với a, c ∈ Z và a > 0. Khi đó a + 2c bằng?
Đề khảo sát THPTQG lần 1 Toán 11 năm 2019 - 2020 trường chuyên Vĩnh Phúc
Ngày … tháng 11 năm 2019, trường THPT chuyên Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng các môn thi Trung học Phổ thông Quốc gia lần 1 môn Toán lớp 11 năm học 2019 – 2020. Đề khảo sát THPTQG lần 1 Toán 11 năm 2019 – 2020 trường chuyên Vĩnh Phúc có mã đề 890, đề được biên soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi gồm có 05 trang, đây là kỳ thi được tổ chức thường xuyên qua các năm lớp 11 – lớp 11 – lớp 12, nhằm có sự chuẩn bị lâu dài cho kỳ thi THPT Quốc gia môn Toán, đề thi có đáp án. Trích dẫn đề khảo sát THPTQG lần 1 Toán 11 năm 2019 – 2020 trường chuyên Vĩnh Phúc : + Cho các mệnh đề: “Phép biến hình là phép dời hình” (I). “Phép dời hình là phép biến hình” (II). “Phép dời hình là phép đồng dạng” (III). “Phép đồng dạng là phép biến hình” (IV). Các mệnh đề đúng là? + Đồ thị của hàm số y = x^2 + 4x + 2 có được từ đồ thị hàm số y = x^2 – 4x + 4 như thế nào? A. Sang phải bốn đơn vị và lên trên hai đơn vị. B. Sang trái bốn đơn vị và xuống dưới hai đơn vị. C. Sang trái bốn đơn vị và lên trên hai đơn vị. D. Sang phải bốn đơn vị và xuống dưới hai đơn vị. [ads] + Cho tam giác ABC, D(1;-1) là chân đường phân giác của góc A, AB có phương trình 3x + 2y – 9 = 0, tiếp tuyến tại A của đường tròn ngoại tiếp tam giác có phương trình ∆: x + 2y – 7 = 0. Phương trình BC là ax + by + c = 0 với a, b, c là các số nguyên không có ước chung khác ±1. Tính a – b + c. + Thực hiện liên tiếp hai phép đối xứng tâm sẽ cho kết quả là: A. Một phép vị tự. B. Một phép tịnh tiến. C. Một phép đối xứng trục. D. Một phép đối xứng tâm. + Cho một tam giác vuông. Nếu tăng mỗi cạnh lên 2cm thì diện tích tăng 19cm2. Nếu giảm các cạnh góc vuông đi 3cm và 1cm thì diện tích giảm đi 12cm2. Tính chu vi tam giác ban đầu?