Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Đoan Hùng - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Đoan Hùng – Phú Thọ : + Cho tam giác đều ABC nội tiếp đường tròn (O), gọi H là trung điểm của cạnh BC, M là điểm bất kỳ thuộc đoạn BH (M khác B). Lấy điểm N thuộc đoạn thẳng CA sao cho CN BM. Gọi I là trung điểm của MN. a) Chứng minh rằng bốn điểm OM H I cùng thuộc một đường tròn. b) Gọi P là giao điểm của OI và AB. Chứng minh rằng tam giác MNP đều. c) Xác định vị trí điểm M để tam giác IAB có chu vi nhỏ nhất. + Một chiếc đu quay có bán kính 75m, tâm của vòng quay ở độ cao 90m, thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét? + Cho P x là một đa thức bậc n với hệ số nguyên, n ≥ 2. Biết P P 1 2 2023. Chứng minh rằng phương trình P x 0 không có nghiệm nguyên.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho xyz là các số nguyên và 2023 Px y z. Chứng minh rằng P chia hết cho 30 khi và chỉ khi S chia hết cho 30. + Cho tam giác nhọn ABC (AB AC) nội tiếp đường tròn (O). Các đường cao AD BE CF cắt nhau tại H. Tia AH cắt (O) tại K (K khác A), tia KO cắt (O) tại M (M khác K) và tia MH cắt (O) tại P (P khác M). a) Chứng minh OD MH và tứ giác AODP nội tiếp một đường tròn. b) Gọi Q là giao điểm của PA và EF. Chứng minh AQ AP AH AD và DQ EF. c) Tia PE và tia PF cắt đường tròn (O)lần lượt tại L và N (L N khác P). Chứng minh LC NB. + Cho n là số lẻ. Chứng minh rằng từ 2 n 1 số nguyên bất kì có thể chọn ra được n số sao cho tổng của chúng chia hết cho n.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào ngày 26 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Đắk Lắk : + Cho a, b là các số nguyên dương thỏa mãn (a + b)2 + 4a / ab là số tự nhiên. Chứng minh rằng: Nếu b là số lẻ thì a là số chính phương. + Tìm tất cả các tam giác vuông có độ dài các cạnh là số nguyên dương và số đo chu vi bằng số đo diện tích. + Cho tứ giác ABCD nội tiếp trong đường tròn (O). Gọi P là điểm chính giữa cung CD không chứa hai điểm A và B. Tia AP cắt đường thẳng BC tại E, tia BP cắt đường thẳng AD tại F.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Sông Công - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thành phố Sông Công, tỉnh Thái Nguyên; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Sông Công – Thái Nguyên : + Cho phương trình x2 – (2m + 3)x + m = 0 (với m là tham số). a. Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của m. b. Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 sao cho (x12 + x22) đạt giá trị nhỏ nhất. + Tìm tất cả các số nguyên dương n sao cho n4 + 4n là số nguyên tố. Tìm nghiệm nguyên của phương trình 20y2 – 6xy + 15x = 150. + Cho tam giác ABC vuông cân tại A có AH là đường cao. Trên đoạn thẳng HC lấy điểm M (M H M C). Gọi I, J lần lượt là chân đường vuông góc kẻ từ M đến các cạnh AC và AB; N là điểm đối xứng của M qua đường thẳng IJ. a. Chứng minh rằng các điểm A, J, M, I, N cùng thuộc một đường tròn. b. Chứng minh rằng điểm N thuộc đường tròn đường kính BC. c. Đường thẳng AM cắt đường tròn đường kính BC tại điểm P (P khác A). Chứng minh rằng PM PM AB PC PB. d. Gọi D là trung điểm của đoạn thẳng AH. Kẻ HK vuông góc với CD tại điểm K. Chứng minh rằng BAK = KHC.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Lâm Đồng : + Trong khuôn viên sân trường có khu đất hình chữ nhật với các kích thước là 16 mét và 18 mét. Nhà trường làm hai bồn hoa hình tròn, phần còn lại của khu đất đó nhà trường giao cho lớp 9A trồng cỏ (Minh họa hình bên). Tính diện tích phần trồng cỏ (lấy pi = 3,14). + Vào dịp họp mặt gia đình đầu năm Giáp Thìn 2024, bạn An hỏi mẹ về tuổi của bác Hai và chú Sáu thì được mẹ trả lời: “Lúc tuổi của bác Hai bằng tuổi chú Sáu hiện nay thì tuổi của bác Hai gấp ba lần tuổi của chú Sáu; lúc tuổi chú Sáu bằng tuổi bác Hai hiện nay thì tổng số tuổi của hai người đó là 98”. Em hãy giúp bạn An tính tuổi của bác Hai và chú Sáu hiện nay. + Số học sinh đạt “Học sinh giỏi cấp tỉnh” của thành phố X năm học 2023 – 2024 là một số tự nhiên có hai chữ số lớn hơn 50. Biết rằng tích hai chữ số lớn hơn tổng hai chữ số của số đó là 5 và chữ số hàng chục lớn hơn chữ số hàng đơn vị. Hỏi năm học 2023 – 2024, thành phố X có bao nhiêu học sinh đạt “Học sinh giỏi cấp tỉnh”.