Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 05 đề thi cuối học kì 1 (HK1) lớp 10 môn Toán Cánh Diều cấu trúc trắc nghiệm mới

Nội dung Tuyển tập 05 đề thi cuối học kì 1 (HK1) lớp 10 môn Toán Cánh Diều cấu trúc trắc nghiệm mới Bản PDF Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Đặng Công Đức (Giang Sơn), tuyển tập 05 đề thi cuối học kỳ 1 môn Toán lớp 10 chương trình SGK Cánh Diều, dựa theo cấu trúc trắc nghiệm mới do Bộ Giáo dục và Đào tạo công bố. Đề thi gồm 03 phần: phần 1: trắc nghiệm nhiều phương án lựa chọn, phần 2: trắc nghiệm đúng sai, phần 3: trắc nghiệm trả lời ngắn; thời gian học sinh làm bài thi là 90 phút. Trích dẫn Tuyển tập 05 đề thi cuối học kỳ 1 môn Toán lớp 10 Cánh Diều cấu trúc trắc nghiệm mới: + Vòng xoay ở một ngã bảy là một hình tròn, ở giữa người ta thiết kế một bồn hoa hình tam giác như hình vẽ, phần còn lại trồng cỏ. Dựa trên các số liệu đo được, em hãy tính diện tích phần trồng cỏ (kết quả chính xác đến số nguyên liền trước gần nhất). + Một xưởng cơ khí có hai công nhân là Thái và Bình. Xưởng sản xuất loại sản phẩm I và II. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Thái phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Bình phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Thái không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Tính số tiền lãi lớn nhất trong một tháng của xưởng (kết quả làm tròn số nguyên gần nhất). + Một công ty điện tử sản xuất hai kiểu radio trên hai dây chuyền độc lập. Công suất của dây chuyền 1 là 45 radio/ngày và dây chuyền 2 là 80 radio/ngày. Để sản xuất một chiếc radio kiểu 1 cần 12 linh kiện điện tử, với kiểu 2 cần 9 linh kiện điện tử, và một chiếc radio kiểu này được cung cấp mỗi ngày không vượt quá 900. Tiễn lãi khi bán một chiếc radio kiểu 1 là 250000 đồng và kiểu 2 là 180000 đồng. Giả sử trong một ngày công ty sản xuất a linh kiện kiểu 1 và b linh kiện kiểu 2 thì lợi nhuận thu được cao nhất. Tính 2a + 3b.

Nguồn: sytu.vn

Đọc Sách

Đề cuối học kỳ 1 Toán 10 năm 2022 - 2023 trường THPT Quế Sơn - Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán 10 năm học 2022 – 2023 trường THPT Quế Sơn, tỉnh Quảng Nam; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn Đề cuối học kỳ 1 Toán 10 năm 2022 – 2023 trường THPT Quế Sơn – Quảng Nam : + Học sinh chọn câu trả lời đúng và tô vào ô tương ứng trong phiếu làm bài riêng. Trong các câu sau, câu nào không phải là mệnh đề? A. Hãy làm bài kiểm tra thật nghiêm túc! B. Hà Nội là thủ đô của Việt Nam. C. 7 là số nguyên tố. D. 8 + 2 = 11. + Hai chiếc tàu thủy cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 1200. Tàu thứ nhất chạy với vận tốc 50km/h, tàu thứ hai chạy với vận tốc 40km/h. Hỏi sau 1 giờ hai tàu cách nhau bao nhiêu km? + Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD có B(1;2), D(3;-1). a) Tìm tọa độ điểm P trên trục Ox sao cho tam giác BDP vuông tại D. b) Gọi Q là trung điểm của cạnh BC, N là giao điểm của AC và DQ. Biết N(2;-1), tìm tọa độ các điểm A, C.
Đề cuối kỳ 1 Toán 10 năm 2022 - 2023 trường THPT Hướng Hóa - Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán 10 năm học 2022 – 2023 trường THPT Hướng Hóa, tỉnh Quảng Trị; đề thi có đáp án trắc nghiệm và hướng dẫn giải tự luận mã đề 101 102 103 104 105 106 107 108. Trích dẫn Đề cuối kỳ 1 Toán 10 năm 2022 – 2023 trường THPT Hướng Hóa – Quảng Trị : + Chọn câu đúng trong các câu trả lời sau đây: Phương sai bằng A. căn bậc hai của độ lệch chuẩn. B. bình phương của độ lệch chuẩn. C. một nửa của độ lệch chuẩn D. hai lần của độ lệch chuẩn. + Điểm trung bình 12 môn của một học sinh được cho như sau: 8,6 8,2 8,1 8,8 8,8 8,1 8,2 8,0 6,5 9,8 7,8 7.8 a) Hãy tìm số trung bình, số trung vị của mẫu số liệu trên. b) Hãy tìm độ lệch chuẩn, khoảng tứ phân vị và giá trị bất thường của mẫu số liệu trên. + Trên sông, một ca nô chuyển động thẳng đều theo hướng N30 W với vận tốc 2 v có độ lớn bằng 20 km/h. Tính độ lớn vận tốc riêng 3 v của ca nô và biểu diễn hướng của lực. Biết rằng 23 1 vv v 2 nước trên sông chảy về hướng đông với vận tốc 1 v có độ lớn bằng 3 km/h. Giải thích thuật ngữ.
Đề học kì 1 Toán 10 năm 2022 - 2023 trường THPT Ngô Gia Tự - Phú Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán 10 năm học 2022 – 2023 trường THPT Ngô Gia Tự, tỉnh Phú Yên; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút, không tính thời gian phát đề; đề thi có đáp án và lời giải chi tiết Mã đề 123 Mã đề 234 Mã đề 345 Mã đề 456. Trích dẫn Đề học kì 1 Toán 10 năm 2022 – 2023 trường THPT Ngô Gia Tự – Phú Yên : + Chọn khẳng định sai trong các khẳng định sau khi nói về một mẫu số liệu A. Trong một mẫu số liệu, số trung vị là duy nhất. B. Trong một mẫu số liệu, tứ phân vị dưới là duy nhất. C. Trong một mẫu số liệu, mốt là duy nhất. D. Trong một mẫu số liệu, số trung bình là duy nhất. + Mệnh đề nào sau đây là mệnh đề đúng? A. Số là một số hữu tỷ. B. Số là một số nguyên. C. Số là một số vô tỷ. D. Số là một số tự nhiên. + Phát biểu nào sau đây là một mệnh đề? A. Bạn nên học hành chăm chỉ. B. Thời tiết hôm nay thật đẹp! C. Bây giờ là mấy giờ? D. Số 4 là một số chính phương.
Đề cuối kì 1 Toán 10 năm 2022 - 2023 trường THPT Nguyễn Hữu Huân - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng cuối học kì 1 môn Toán 10 năm học 2022 – 2023 trường THPT Nguyễn Hữu Huân, thành phố Hồ Chí Minh (dạng đề 100% tự luận). Trích dẫn Đề cuối kì 1 Toán 10 năm 2022 – 2023 trường THPT Nguyễn Hữu Huân – TP HCM : + Cho hàm số bậc hai y = 2×2 + bx + c có đồ thị là parabol (P). Tìm b và c biết rằng (P) có hoành độ đỉnh bằng −2 và (P) đi qua điểm N(1;−2). + Cho tam giác ABC, điểm M trên cạnh BC sao cho BM = 1/3.BC, điểm E trên cạnh AC sao cho AE = 3/4.AC. a) Chứng minh rằng: ME = -2/3.AB + 5/12.AC. b) Gọi F là điểm thỏa AB = 5BF. Chứng minh rằng: ba điểm F, M, E thẳng hàng. + Vào ngày 23/11/2022, trận đấu giải chung kết World Cup 2022 giữa Pháp và Úc đã diễn ra tại sân vận động Al Janoub (Qatar) với sức chứa 40 000 người. Gần đến ngày tổ chức trận đấu, ban tổ chức chỉ còn phát hành hai loại vé là 400 USD và 200 USD (USD: Đô-la Mỹ, một loại đơn vị tiền tệ). Do điều kiện sân đấu nên số lượng vé có giá 400 USD không lớn hơn số lượng vé có giá 200 USD. Để an toàn phòng dịch, liên đoàn bóng đá yêu cầu tổng số lượng vé hai loại 400 USD và 200 USD phát hành không được quá 30% sức chứa của sân. Biết rằng số tiền thu được qua việc bán hai loại vé này không được ít hơn 3 triệu USD. Gọi x, y lần lượt là số vé giá 400 USD và 200 USD được bán ra. a) Hãy viết hệ bất phương trình bậc nhất hai ẩn x, y để biểu diễn số vé mỗi loại được bán ra đảm bảo mục đích của ban tổ chức. b) Biết rằng ban tổ chức sẽ lãi được 50 USD khi bán được một vé giá 400 USD và lãi được 30 USD khi bán được một vé giá 200 USD. Hỏi ban tổ chức cần bán bao nhiêu vé mỗi loại để thu được lợi nhuận nhiều nhất?