Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán lần 4 năm 2022 2023 phòng GD ĐT Bình Xuyên Vĩnh Phúc

Nội dung Đề khảo sát lớp 9 môn Toán lần 4 năm 2022 2023 phòng GD ĐT Bình Xuyên Vĩnh Phúc Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 lần 4 năm 2022 – 2023 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc Đề khảo sát Toán lớp 9 lần 4 năm 2022 – 2023 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 bộ đề khảo sát chất lượng môn Toán lần 4 trong năm học 2022 – 2023 do Phòng Giáo dục và Đào tạo huyện Bình Xuyên, tỉnh Vĩnh Phúc tổ chức. Đề thi bao gồm 20% câu trắc nghiệm và 80% câu tự luận, thời gian làm bài là 120 phút, không tính thời gian giao đề. Đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích đoạn từ đề khảo sát: Biểu thức 2024 2023 P x có nghĩa khi và chỉ khi? Một công nhân được giao làm 64 sản phẩm nhưng lại làm thêm 6 sản phẩm, từ đó vượt khỏi kế hoạch 2 sản phẩm mỗi ngày và hoàn thành sớm 1 ngày. Hỏi mỗi ngày công nhân làm được bao nhiêu sản phẩm? Trong hình vẽ gồm đường tròn (O), điểm A nằm bên ngoài đường tròn, AB, AC tiếp xúc với đường tròn tại B, C. Hai đường thẳng AD và AE đi qua A cắt đường tròn tại D, E (D nằm giữa A và E, tia AE nằm giữa AB và AO), H là trung điểm của DE, AI cắt BC tại I. Chứng minh rằng: a) Tứ giác ABOC nội tiếp đường tròn. b) HA là phân giác của góc BHC. c) AI/AD = AE. Hy vọng rằng bộ đề này sẽ giúp các em học sinh lớp 9 kiểm tra và củng cố kiến thức Toán một cách hiệu quả. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Yên Bình - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Bình, tỉnh Yên Bái (đề chính thức và đề dự bị); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 29 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Yên Bình – Yên Bái : + Tìm số tự nhiên biết: Nếu số đó cộng thêm 64 đơn vị hoặc bớt đi 35 đơn vị thì ta đều được một số chính phương. + Cho hình vuông ABCD cạnh a. Trên các cạnh BC và AD lần lượt lấy các điểm E và F sao cho CE = AF. Các đường thẳng AE, BF cắt đường thẳng CD theo thứ tự ở M và N. a) Chứng minh: CM.DN = a2; b) Gọi K là giao điểm của NA và MB. Chứng minh: 90o MKN; c) Các điểm E và F có vị trí như thế nào thì MN có độ dài nhỏ nhất? + Cho tứ giác ABCD có AC = 10cm, BD = 12cm và góc giữa AC và BD bằng 300. Tính diện tích tứ giác ABCD.
Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 - 2023 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho hai số tự nhiên a, b thỏa mãn 3a2 + a = 4b2 + b. Chứng minh a – b và 4a + 4b + 1 đều là số chính phương. + Cho tam giác ABC nhọn (AB < AC). Đường tròn tâm I nội tiếp tam giác ABC lần lượt tiếp xúc với BC, CA, AB tại D, E, F. Gọi M là trung điểm của BC. Gọi N là giao điểm của ID và EF. Qua N kẻ đường thẳng song song với BC cắt AB, AC tại Q và P. Qua A kẻ đường thẳng song song với BC cắt EF tại K. a) Chứng minh IP = IQ. b) Chứng minh IAM = FKI. c) Gọi S, L, V lần lượt là giao điểm của AI, BI, CI với BC, CA và AB. Chứng minh. + Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng tồn tại một số có dạng 111…11 chia hết cho p.
Đề HSG Toán 9 vòng 3 năm 2022 - 2023 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 vòng 3 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2022.