Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Ba Đình Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Ba Đình Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng môn Toán lớp 9 năm 2018-2019 phòng GD ĐT Ba Đình Hà Nội Đề khảo sát chất lượng môn Toán lớp 9 năm 2018-2019 phòng GD ĐT Ba Đình Hà Nội Ngày 07 tháng 05 năm 2019, phòng Giáo dục và Đào tạo quận Ba Đình, Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2018 - 2019. Kỳ thi nhằm mục đích giúp học sinh rèn luyện thường xuyên để củng cố và nâng cao kiến thức Toán THCS, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 - 2020. Đề khảo sát chất lượng Toán lớp 9 năm 2018-2019 phòng GD&ĐT Ba Đình - Hà Nội được biên soạn dưới dạng tự luận, bao gồm 1 trang với 6 bài toán. Học sinh được cấp 90 phút (không tính thời gian giám thị coi thi phát đề) để hoàn thành bài thi khảo sát chất lượng môn Toán lớp 9. Trích dẫn đề khảo sát chất lượng Toán lớp 9 năm 2018-2019 phòng GD&ĐT Ba Đình - Hà Nội: Một phòng họp có 300 ghế ngồi, được xếp thành một số hàng có số ghế bằng nhau. Buổi họp có 378 người tham dự, ban tổ chức đã kê thêm 3 hàng ghế và mỗi hàng phải xếp thêm 1 ghế, mới đủ chỗ ngồi. Hỏi lúc đầu phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế, biết số hàng ghế ban đầu không vượt quá 20. Cho phương trình: x^2 - (x - 3)x - m + 2 = 0 (x là ẩn số). (a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m. (b) Tìm m để phương trình có ít nhất một nghiệm dương. Cho đường tròn (O;R) và dây BC cố định (BC < 2R), BF là đường kính. A là điểm di chuyển trên cung lớn BC (A khác B, C) sao cho tam giác ABC có ba góc nhọn. Các đường cao AD và CE của tam giác ABC cắt nhau tại H. (1) Chứng minh tứ giác AEDC là tứ giác nội tiếp. (2) Chứng minh HF đi qua trung điểm G của đoạn thẳng AC. (3) Chứng minh AF/sinDEC không đổi. (4) Cho BC = 1,5R; gọi I là hình chiếu của G trên AB. Hãy tính bán kính đường tròn ngoại tiếp tam giác IBC theo R.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 đầu năm 2023 - 2024 trường THCS Kim Ngọc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 đầu năm học 2023 – 2024 trường THCS Kim Ngọc, tỉnh Vĩnh Phúc; đề thi hình thức 20% trắc nghiệm (04 câu) + 80% tự luận (04 câu), thời gian làm bài 90 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 đầu năm 2023 – 2024 trường THCS Kim Ngọc – Vĩnh Phúc : + Chọn chữ cái đứng trước câu trả lời đúng và ghi vào tờ giấy thi của em. Điều kiện xác định của biểu thức 2023 x 2024 là? + Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9 cm, BC = 15 cm. Khi đó độ dài AH bằng? + Cho ∆ABC vuông tại A, đường cao AH. Có AB = 6cm; BC = 10cm. a) Tính độ dài đoạn thẳng AC? b) Chứng minh ∆ABC đồng dạng với ∆HBA, từ đó suy ra AB.AH = BH.AC. c) Chứng minh AB2 = BC.BH và AH.BC = AB.AC.
Đề khảo sát tháng 9 Toán 9 năm 2023 - 2024 trường THCS Xã Ta Gia - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng tháng 9 môn Toán 9 năm học 2023 – 2024 trường THCS Xã Ta Gia, huyện Than Uyên, tỉnh Lai Châu; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát tháng 9 Toán 9 năm 2023 – 2024 trường THCS Xã Ta Gia – Lai Châu : + Rút gọn biểu thức. + Tìm x y trên hình vẽ sau? + Cho biểu thức: M. a) Rút gọn biểu thức M. b) Tìm M khi a = 4.
Đề kiểm tra Toán 9 năm 2023 - 2024 trường THCS Kim Giang - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra môn Toán 9 năm học 2023 – 2024 trường THCS Kim Giang, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 22 tháng 09 năm 2023. Trích dẫn Đề kiểm tra Toán 9 năm 2023 – 2024 trường THCS Kim Giang – Hà Nội : + Cho hai biểu thức. a) Tính giá trị của A khi x = 9. b) Rút gọn biểu thức B. c) Biết P = A.B. Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị âm. + Giải bài toán sau bằng cách lập phương trình: Một tổ sản xuất dự định làm một số sản phẩm trong 20 ngày với năng suất định trước. Do tăng năng suất thêm 5 sản phẩm mỗi ngày nên đã hoàn thành kế hoạch sớm hơn thời hạn dự định 1 ngày và còn vượt mức kế hoạch 60 sản phẩm. Hỏi thực tế tổ đó đã sản xuất được bao nhiêu sản phẩm? + Cho tam giác ABC và đường cao AH. Gọi I, K lần lượt là hình chiếu của H trên AB, AC. 1) Chứng minh: AH2 = AI.AB và AI.AB = AK.AC. 2) Chứng minh: các tam giác ABC và AKI đồng dạng. 3) Kẻ thêm các đường cao BD và CE của tam giác ABC. a) Chứng minh ED // IK. b) Chứng minh rằng SDEH = (1 – cos2A – cos2B – cos2C).SABC.
Đề khảo sát Toán 9 đầu năm 2023 - 2024 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 đầu năm học 2023 – 2024 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 21 tháng 09 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát Toán 9 đầu năm 2023 – 2024 trường THCS Giảng Võ – Hà Nội : + Tính chiều cao của cây trong hình bên, biết rằng người đo dùng thước ngắm vuông góc và đứng cách cây 3m, khoảng cách từ mắt người đo đến mặt đất là 1,5m. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. 1) Giả sử AB = 9cm, AC = 12cm. Tính độ dài các đoạn thẳng BC, BH và AH. 2) Gọi M và N lần lượt là chân các đường vuông góc kẻ từ điểm H đến các đường thẳng AB và AC. Chứng minh AM.AB = AN.AC. 3) Đường thẳng đi qua điểm A và song song với đường MN cắt đường thẳng đi qua điểm C và song song với đường AH tại điểm K. Gọi I là giao điểm của AH và BK. Chứng minh ba điểm M, I, N là ba điểm thẳng hàng. + Cho x, y, z là độ dài ba cạnh của một tam giác có chu vi bằng 2. Tìm giá trị nhỏ nhất của biểu thức E.