Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 bài toán thực tế liên quan đạo hàm - tích phân có lời giải

Tài liệu gồm 54 trang, tuyển chọn 50 bài toán thực tế liên quan đạo hàm – tích phân thường gặp trong đề thi thử THPT Quốc gia môn Toán, có đáp án và lời giải chi tiết, giúp học sinh ôn thi tốt nghiệp THPT môn Toán. Trích dẫn tài liệu 50 bài toán thực tế liên quan đạo hàm – tích phân có lời giải: + Một con kiến đậu ở đầu B của một thanh cứng mảnh AB có chiều dài L đang dựng cạnh một bức tường thẳng đứng (hình vẽ). Vào thời điểm mà đầu B bắt đầu chuyển động sang phải theo sàn ngang với vận tốc không đổi v thì con kiến bắt đầu bò dọc theo thanh với vận tốc không đổi u đối với thanh. Trong quá trình bò trên thanh, con kiến đạt được độ cao cực đại max h là bao nhiêu đối với sàn? Cho đầu A của thanh luôn tỳ lên tường thẳng đứng. + Từ một khúc gỗ tròn hình trụ có đường kính bằng 40 cm, cần xả thành một chiếc xà có tiết diện ngang là hình vuông và bốn miếng phụ được tô màu xám như hình vẽ dưới đây. Tìm chiều rộng x của miếng phụ để diện tích sử dụng theo tiết diện ngang là lớn nhất. + Một điểm C trên hòn đảo có khoảng cách ngắn nhất đến bờ biển là 60 km, B là điểm trên bờ biển sao cho CB vuông góc với bờ biển. Khoảng cách từ A trên bờ biển đến B là 100 km. Để tham dự buổi họp nhóm Strong Team Toán VD – VCD ngày 28/6/2019, thầy Quý phải tính toán vị trí diễn ra cuộc họp tại địa điểm G trên đoạn AB để tổng chi phí đi lại của cả hai nhóm các thầy cô là ít nhất. Biết nhóm của thầy Quý đi từ C theo đường biển chi phí đi là 500 nghìn mỗi km, nhóm cô Thêm đi từ vị trí A đi trên đất liền mỗi km chi phí là 300 nghìn. Hỏi thầy tìm được vị trí điểm G cách B bao xa?

Nguồn: toanmath.com

Đọc Sách

Toàn tập nguyên hàm, tích phân vận dụng cao (chuyên đề tính toán)
Tài liệu gồm 114 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm chuyên đề nguyên hàm và tích phân vận dụng cao (chuyên đề tính toán) lớp 12 THPT, giúp học sinh rèn luyện khi học chương trình Toán 12 phần Giải tích chương 3: Nguyên hàm, tích phân và ứng dụng. A: TỪNG PHẦN, VI PHÂN (A1 ĐẾN A8). B: NGUYÊN HÀM NÂNG CAO (B1 ĐẾN B8). C: THAM SỐ, GIÁ TRỊ TUYỆT ĐỐI, MIN MAX, HÀM SỐ CHẴN LẺ (C1 ĐẾN C8). D: HÀM ẨN TỔNG HỢP (D1 ĐẾN D8). E: TÍCH PHÂN HAI VẾ, ĐỔI BIẾN, XÁC ĐỊNH HÀM (E1 ĐẾN E8). F: HẰNG ĐẲNG THỨC, BẤT ĐẲNG THỨC TÍCH PHÂN (F1 ĐẾN F8). G: TÍCH PHÂN THUẦN NÂNG CAO (G1 ĐẾN G8).
Giải bài toán nguyên hàm - tích phân dưới sự hỗ trợ của máy tính Casio FX-580 VNX
Tích phân là một trong những chuyên đề hay, có nhiều ứng dụng trong tính toán thực tế. Ngoài ra, tích phân cũng là một chuyên đề thường xuyên xuất hiện trong các đề thi THPT Quốc Gia từ những câu hỏi ở mức độ nhận biết đến các bài vận dụng. Với hình thức thi Trắc nghiệm thì việc sử dụng máy tính thành thạo và hiệu quả giúp học sinh hạn chế tính nhầm, tránh trường hợp sai số đáng tiếc (cấu trúc đề bài có các đáp án nhiễu). Mặt khác tối ưu thời gian làm bài. Trong bài viết này, Diễn đàn máy tính cầm tay sẽ tổng hợp một số hướng giải quyết các dạng toán tiêu biểu của chuyên đề Tích phân trong các đề thi dưới sự hỗ trợ của máy tính Casio fx-580 VNX. Phụ lục: 1. TÌM NGUYÊN HÀM F(x) CỦA HÀM SỐ f(x) CHO TRƯỚC 1. 2. TÌM NGUYÊN HÀM F(x) CỦA HÀM SỐ f(x) CHO TRƯỚC THỎA ĐIỀU KIỆN F(x0) = M 5. 3. XÁC ĐỊNH CÁC ẨN SỐ A, B, C TRONG BÀI TOÁN TÍCH PHÂN 6. 4. ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH MẶT PHẲNG 10. 5. ỨNG DỤNG TÍCH PHÂN ĐỂ TÍNH THỂ TÍCH KHỐI TRÒN XOAY 13. 6. ỨNG DỤNG TÍCH PHÂN ĐỂ GIẢI QUYẾT CÁC BÀI TOÁN THỰC TẾ 18.
Toàn tập nguyên hàm và tích phân cơ bản
Tài liệu gồm 118 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm chuyên đề nguyên hàm và tích phân cơ bản lớp 12 THPT, giúp học sinh rèn luyện khi học chương trình Toán 12 phần Giải tích chương 3: Nguyên hàm, tích phân và ứng dụng. Nguyên hàm : + Cơ bản nguyên hàm đa thức + phân thức hữu tỷ p1. + Cơ bản nguyên hàm đa thức + phân thức hữu tỷ p2. + Cơ bản nguyên hàm đa thức + phân thức hữu tỷ p3. + Cơ bản nguyên hàm vô tỷ p1. + Cơ bản nguyên hàm vô tỷ p2. + Cơ bản nguyên hàm hàm số lượng giác p1. + Cơ bản nguyên hàm hàm số lượng giác p2. + Cơ bản nguyên hàm hàm số lượng giác p3. + Cơ bản nguyên hàm hàm số siêu việt p1. + Cơ bản nguyên hàm hàm số siêu việt p2. + Cơ bản nguyên hàm hàm số siêu việt p3. + Cơ bản nguyên hàm từng phần p1. + Cơ bản nguyên hàm từng phần p2. + Cơ bản nguyên hàm từng phần p3. + Tổng hợp cơ bản nguyên hàm p1. + Tổng hợp cơ bản nguyên hàm p2. + Tổng hợp cơ bản nguyên hàm p3. + Tổng hợp cơ bản nguyên hàm p4. + Tổng hợp cơ bản nguyên hàm p5. + Tổng hợp cơ bản nguyên hàm p6. + Tổng hợp cơ bản nguyên hàm p7. + Tổng hợp cơ bản nguyên hàm p8. + Tổng hợp cơ bản nguyên hàm p9. + Tổng hợp cơ bản nguyên hàm p10. + Tổng hợp cơ bản nguyên hàm p11. Tích phân : + Cơ bản tính chất tích phân p1. + Cơ bản tính chất tích phân p2. + Cơ bản tích phân hữu tỷ p1. + Cơ bản tích phân hữu tỷ p2. + Cơ bản tích phân hữu tỷ p3. + Cơ bản tích phân vô tỷ p1. + Cơ bản tích phân vô tỷ p2. + Cơ bản tích phân vô tỷ p3. + Cơ bản tích phân lượng giác p1. + Cơ bản tích phân lượng giác p2. + Cơ bản tích phân siêu việt p1. + Cơ bản tích phân siêu việt p2. + Cơ bản tích phân siêu việt p3. + Cơ bản tích phân từng phần p1. + Cơ bản tích phân từng phần p2. + Cơ bản tích phân từng phần p3. + Tổng hợp cơ bản tích phân p1. + Tổng hợp cơ bản tích phân p2. + Tổng hợp cơ bản tích phân p3. + Tổng hợp cơ bản tích phân p4. + Tổng hợp cơ bản tích phân p5. + Tổng hợp cơ bản tích phân p6. Ứng dụng nguyên hàm, tích phân : + Cơ bản ứng dụng tích phân diện tích p1. + Cơ bản ứng dụng tích phân diện tích p2. + Cơ bản ứng dụng tích phân diện tích p3. + Cơ bản ứng dụng tích phân diện tích p4. + Cơ bản ứng dụng tích phân diện tích p5. + Cơ bản ứng dụng tích phân thể tích p1. + Cơ bản ứng dụng tích phân thể tích p2. + Cơ bản ứng dụng tích phân thể tích p3. + Cơ bản ứng dụng tích phân thể tích p4. + Cơ bản ứng dụng tích phân thể tích p5. + Tổng hợp ứng dụng tích phân p1. + Tổng hợp ứng dụng tích phân p2. + Tổng hợp ứng dụng tích phân p3. + Tổng hợp ứng dụng tích phân p4.
Bất đẳng thức tích phân và một số bài toán liên quan
Tài liệu gồm 19 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn giải các bài toán bất đẳng thức tích phân và một số bài toán liên quan, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN Cho các hàm số y f x và y g x có đạo hàm liên tục trên a b. Khi đó: Nếu f x g x với mọi x a b thì b b a a f x dx g x dx. Nếu f x 0 với mọi x a b thì 0 b a f x dx. Hệ quả: 2 0 0 b a f x dx f x. Bất đẳng thức Holder (Cauchy – Schwarz): 2 2 2 b b b a a a f x g x dx f x dx g x dx Đẳng thức xảy ra khi và chỉ khi f x kg x với k. B. BÀI TẬP Cho hàm số y f x có đạo hàm liên tục trên 02 đồng thời thỏa mãn điều kiện f2 2 2 0 xf x dx và 2 2 0 f x dx 10. Hãy tính tích phân 2 2 0 I x f x dx? Cho hàm số y f x có đạo hàm liên tục trên 12 đồng thời thỏa mãn 2 3 1 x f x dx 31. Tìm giá trị nhỏ nhất của tích phân 2 4 1 I f x dx? Cho hàm số y f x nhận giá trị không âm và liên tục trên đoạn 01 đồng thời ta đặt 0 1 x g x f t dt. Biết g x f x với mọi x 0 1. Tích phân 1 0 1 dx g x có giá trị lớn nhất bằng?