Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 40 đề ôn thi cuối học kì 1 môn Toán 11

Tài liệu gồm 82 trang, được chia sẻ bởi thầy giáo Nguyễn Chín Em, tuyển tập 40 đề ôn thi cuối học kì 1 môn Toán 11, giúp học sinh khối lớp 11 rèn luyện để chuẩn bị cho kì thi HK1 Toán 11 năm học 2021 – 2022. Trích dẫn tài liệu tuyển tập 40 đề ôn thi cuối học kì 1 môn Toán 11: + Từ một bình đựng 5 viên bi xanh và 3 viên bi đỏ, lấy ngẫu nhiên đồng thời 2 viên bi. Tính xác suất để lấy được 2 viên bi khác nhau. + Gọi S là tập hợp tất cả các số tự nhiên không lớn hơn 2020. Chọn ngẫu nhiên một số thuộc S tính xác suât để chọn được số chia hết cho 5 và không bắt đầu bằng chữ số 5. + Một cấp số nhân n u có số hạng đầu bằng 2 và công bội bằng 3. Hỏi số hạng thứ 7 bằng bao nhiêu? + Cho hình chóp S ABCD có đáy ABCD là hình thang AB CD và AB CD. Gọi HKT lần lượt là trung điểm của các cạnh SA AD BC. Tìm giao tuyến của hai mặt phẳng SAB và SCD. 2) Tìm giao điểm của đường thẳng HK và mặt phẳng SBC. 3) Chứng minh rằng đường thẳng HT song song với mặt phẳng SCD. + Trong giờ thí nghiệm môn Hóa học, bạn Nam thực hiện liên tiếp 2 thí nghiệm. Thí nghiệm thứ nhất có xác suất thành công là 0,85. Nếu thí nghiệm thứ nhất thành công thì thí nghiệm thứ 2 có xác suất thành công là 0,75. Nếu thí nghiệm thứ nhất không thành công thì thí nghiệm thứ 2 có xác suất thành công là 0,35. Tính xác suất để it nhất 1 thí nghiệm thành công.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Giồng Ông Tố TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Giồng Ông Tố TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Giồng Ông Tố, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Giồng Ông Tố – TP HCM : + Một đề thi học kỳ có 5 câu hỏi được chọn từ bộ đề ôn tập gồm 30 câu. Có một học sinh chỉ học thuộc được 23 câu trong bộ đề đó. Tính xác suất để học sinh này trả lời đúng cả 5 câu hỏi. + Xác suất sút bóng từ xa ghi bàn của đội A là 0,7. Trong trận chung kết đội A gặp đội B, các cầu thủ của đội A đã thực hiện 5 lần sút xa. Tính xác suất để đội A ghi được 3 bàn thắng trong 5 tình huống sút xa đó. + Cho hình chóp SABCD có đáy ABCD là hình bình hành tâm O. Gọi M và P lần lượt là trung điểm của cạnh SA và cạnh CD. Tìm giao tuyến d của mặt phẳng (SAD) và mặt phẳng (MOP); giao tuyến của mặt phẳng (SAC) và (SBD). Tìm giao điểm Q của đường thẳng AB và mặt phẳng (MOP). Gọi K là giao điểm của đường thẳng DQ và đường thẳng AC, G là trọng tâm của tam giác SAD. Chứng minh KG // (SBC). Tìm thiết diện của mặt phẳng (MOP) với hình chóp SABCD. Thiết diện là hình gì?
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Diên Hồng TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Diên Hồng TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THCS&THPT Diên Hồng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THCS&THPT Diên Hồng – TP HCM : + Cho hình chóp S.ABC. Gọi M, N, P lần lượt là trung điểm của AB, BC, CA. a) Tìm giao tuyến của hai mặt phẳng (SAN) và (SCM); (SAC) và (SMN). b) Gọi I là trung điểm của SC. Tìm giao điểm của AI với (SMN). c) Chứng minh: SM // (INP). d) Xác định thiết diện của hình chóp cắt bởi (MNI). + Từ một hộp chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng một quả cầu màu đỏ và không có quá hai quả cầu màu vàng. + Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là 1/2 và 1/3. Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phạm Văn Sáng TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phạm Văn Sáng TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Phạm Văn Sáng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Phạm Văn Sáng – TP HCM : + Trong tiết học thực hành hóa, trên kệ đựng hóa chất có: 5 lọ dung dịch chứa axit, 6 lọ dung dịch chứa bazơ và 7 lọ dung dịch chứa muối và 4 lọ nước cất (giả sử các lọ mất nhãn và không màu). Một nhóm học sinh chọn ngẫu nhiên 5 lọ để làm thí nghiệm nhận biết, tính xác suất để chọn được đúng 4 lọ bazơ. + Một nhóm gồm 18 học sinh trong đó có 10 bạn có ngày sinh là ngày lẻ. Chọn ngẫu nhiên 5 học sinh trong nhóm trên để lao động, tính xác suất để tổng ngày sinh của 5 học sinh trên là số lẻ. + Vòng chung kết cuộc thi kể chuyện theo sách năm học 2019 – 2020 của trường THPT Phạm Văn Sáng có 8 học sinh dự thi, trong đó có hai học sinh khối 11 là Hùng và Hoa. Biết rằng mỗi học sinh kể một câu chuyện và được bốc thăm ngẫu nhiên thứ tự tham gia kể chuyện. Tính xác suất để Hùng và Hoa bốc được thăm có thứ tự là hai số tự nhiên liên tiếp.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phước Kiển TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phước Kiển TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Phước Kiển, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Phước Kiển – TP HCM : + Trên kệ sách có 12 cuốn sách gồm có 4 quyển tiểu thuyết, 6 quyển truyện tranh và 2 quyển cổ tích. Lấy 3 quyển từ kệ sách, hỏi có bao nhiêu cách để lấy được 2 quyển tiểu thuyết? + Trong một hộp chứa 8 viên bi trắng, 6 viên bi đen, 5 viên bi đỏ. Lấy ngẫu nhiên ra 4 viên bi. Tính xác suất sao cho: a) 4 viên bi lấy ra gồm 3 viên bi đỏ, 1 viên bi trắng. b) 4 viên bi lấy ra không đủ cả ba màu. + Giải các phương trình lượng giác sau.