Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán trắc nghiệm góc lượng giác và công thức lượng giác

Tài liệu gồm 54 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chủ đề góc lượng giác và công thức lượng giác trong chương trình Đại số 10 chương 6; các bài toán được phân dạng, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán trắc nghiệm góc lượng giác và công thức lượng giác: Chủ đề 1 . Góc và cung lượng giác. Phần A . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Mối liên hệ giữa radian và độ 1 + Dạng toán 2. Đường tròn lượng giác và các bài toán liên quan. 2 Phần B . Đáp án và lời giải chi tiết. + Dạng toán 1. Mối liên hệ giữa radian và độ 4 + Dạng toán 2. Đường tròn lượng giác và các bài toán liên quan. 5 Chủ đề 2 . Giá trị lượng giác của một cung. Phần A . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Xét dấu của các giá trị lượng giác (Trang 1). + Dạng toán 2. Giá trị lượng giác của các cung có liên quan đặc biệt (Trang 2). + Dạng toán 3. Tính giá trị lượng giác (Trang 3). + Dạng toán 4. Rút gọn biểu thức lượng giác (Trang 6). Phần B . Đáp án và lời giải chi tiết. + Dạng toán 1. Xét dấu của các giá trị lượng giác (Trang 9). + Dạng toán 2. Giá trị lượng giác của các cung có liên quan đặc biệt (Trang 10). + Dạng toán 3. Tính giá trị lượng giác (Trang 11). + Dạng toán 4. Rút gọn biểu thức lượng giác (Trang 15). [ads] Chủ đề 3 . Công thức lượng giác. Phần A . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Áp dụng công thức cộng (Trang 1). + Dạng toán 2. Áp dụng công thức nhân đôi và công thức hạ bậc (Trang 4). + Dạng toán 3. Áp dụng công thức biến đổi tích thành tổng, tổng thành tích (Trang 5). + Dạng toán 4. Kết hợp các công thức lượng giác (Trang 7). + Dạng toán 5. Giá trị lớn nhất và giá trị nhỏ nhất (Trang 9). + Dạng toán 6. Nhận dạng tam giác (Trang 9). Phần B . Đáp án và lời giải chi tiết. + Dạng toán 1. Áp dụng công thức cộng (Trang 12). + Dạng toán 2. Áp dụng công thức nhân đôi và công thức hạ bậc (Trang 15). + Dạng toán 3. Áp dụng công thức biến đổi tích thành tổng, tổng thành tích (Trang 17). + Dạng toán 4. Kết hợp các công thức lượng giác (Trang 18). + Dạng toán 5. Giá trị lớn nhất và giá trị nhỏ nhất (Trang 22). + Dạng toán 6. Nhận dạng tam giác (Trang 23).

Nguồn: toanmath.com

Đọc Sách

Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio - Nguyễn Tiến Chinh
Tài liệu Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio của thầy giáo Nguyễn Tiến Chinh gồm 14 trang. Tài liệu hướng dẫn mẹo bấm máy tính nhanh của một số bài toán lượng giác thường gặp.
5 dạng toán hàm số lượng giác điển hình - Trần Đình Cư
Tài liệu gồm 19 trang trình bày 5 dạng toán thường gặp về hàm số lượng giác: + Dạng 1. Tìm tập xác định của hàm số. + Dạng 2. Xét tính chẵn lẻ của hàm số. + Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác. + Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó. + Dạng 5. Vẽ đồ thị hàm số lượng giác. Mỗi dạng đều có phương pháp giải, ví dụ mẫu có lời giải chi tiết kèm theo phần bài tập.
Chuyên đề phương trình lượng giác - Trần Duy Thúc
Tài liệu Chuyên đề phương trình lượng giác của thầy Trần Duy Thúc gồm 39 trang, tài liệu tóm tắt những công thức lượng giác thường gặp, các dạng phương lượng giác cơ bản và nâng cao được đan xen với 50 ví dụ về các phương trình lượng giác điển hình. Phần cuối tài liệu là tuyển tập 160 bài toán phương trình lượng giác được trích từ các đề thi Quốc gia, đề dự bị và đề thi thử.
Các kỹ thuật phổ biến nhất giải phương trình lượng giác - Nguyễn Hữu Biển
Các em học sinh thân mến, bài tập giải phương trình lượng giác là một trong nhưng nội dung thường xuyên xuất hiện trong đề thi đại học, kiến thức về giải phương trình lượng giác các em được học trong chương trình giải tích lớp 11 kết hợp với các công thức và kiến thức nền tảng của lớp 10. Để giải phương trình lượng giác, điều đầu tiên các em cần là phải biết cách học thuộc các công thức biến đổi lượng giác cơ bản, tiếp theo các em cần học tập siêng năng, chuyên cần để đúc rút kinh nghiệm cho bản thân, từ đó biết phân chia các dạng toán và kỹ thuật giải tương ứng để đối phó tốt với mọi loại bài về giải phương trình lượng giác trong đề. [ads] Cuốn tài liệu CÁC KỸ THUẬT PHỔ BIẾN NHẤT GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC được chắt lọc, đánh máy công phu, trình bày đẹp. Nội dung rất hữu ích cho học sinh lớp 11, học sinh ôn thi đại học môn Toán và quý thầy cô giáo dạy Toán THPT. Tài liệu được biên soạn tỉ mỉ, phân chia dạng toán rõ ràng, công thức đầy đủ, mỗi phần đều có ví dụ minh họa và hướng dẫn. Học sinh bị mất gốc kiến thức về lượng giác cũng có thể học lại từ đầu không mấy khó khăn. Hy vọng rằng với cuốn tài liệu hữu ích này, các em học sinh sẽ có một cẩm nang để chinh phục phương trình lượng giác trong thi cử. Tài liệu rất có thể vẫn còn một vài khiếm khuyết, rất mong nhận được ý kiến từ các em học sinh và độc giả.