Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 9 năm học 2019 2020 sở GDĐT Quảng Nam

Nhằm đánh giá tổng kết chất lượng dạy và học môn Toán lớp 9 của giáo viên và học sinh tại các trường THCS tại tỉnh Quảng Nam, ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi kiểm tra học kỳ 2 Toán 9 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 9 năm học 2019 – 2020 sở GD&ĐT Quảng Nam gồm có hai mã đề: mã đề A và mã đề B; đề gồm có 02 trang với 15 câu trắc nghiệm và 03 câu tự luận, phần trắc nghiệm chiếm 05 điểm, phần tự luận chiếm 05 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 2 Toán 9 năm học 2019 – 2020 sở GD&ĐT Quảng Nam : + Cho tam giác ABC (có ba góc nhọn) nội tiếp đường tròn (O) và tia phân giác của góc B cắt đường tròn tại M. Các đường cao BD và CK của ∆ABC cắt nhau tại H. a) Chứng minh rằng tứ giác ADHK nội tiếp một đường tròn. b) Chứng minh rằng OM là tia phân giác của góc AOC. c) Gọi I là giao điểm của OM và AC. Tính tỉ số OI/BH. [ads] + Một khu vườn hình chữ nhật có chiều dài lớn hơn chiều rộng 14 m và diện tích bằng 95 m2. Tính chiều dài và chiều rộng của khu vườn đó. + Cho hình vẽ bên. Biết Mx là tiếp tuyến, xMN = 40 độ. Ta có số đo cung nhỏ MN bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi HK2 Toán 9 năm 2018 2019 phòng GDĐT Hoàng Mai Hà Nội
Đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Hoàng Mai – Hà Nội gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra toàn diện những kiến thức môn Toán mà học sinh khối lớp 9 đã được học trong học kỳ vừa qua, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Hoàng Mai – Hà Nội : + Cho phương trình x^2 + mx – 2 = 0 (1) (với m là tham số). a) Giải phương trình với m = 1. d) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm phân biệt x1, x2 thỏa mãn x1^2.x2 + x2^2.x1 = 2019. + Cho đường tròn (O;R), đường kính AB. Trên tia đối của tia AB lấy điểm C (AC > R). Qua C kẻ đường thẳng d vuông góc với CA. Lấy điểm M trên đường tròn (O) sao cho AM = R/2. Tia BM cắt đường thẳng d tại điểm P. Tia CM cắt đường tròn (O) tại điểm thứ hai là N, tia PA cắt đường tròn (O) tại điểm thứ hai là Q. 1) Chứng minh tứ giác ACPM là tứ giác nội tiếp. 2) Chứng minh NQ // PC. 3) a) Tính thể tích của hình tạo thành khi quay tam giác MAB một vòng quanh AM theo R.
Đề thi HK2 Toán 9 năm 2018 2019 phòng GDĐT Long Biên Hà Nội
Đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Long Biên – Hà Nội gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra toàn diện những kiến thức môn Toán mà học sinh khối lớp 9 đã được học trong học kỳ vừa qua, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Long Biên – Hà Nội : + Tham gia phong trào “Thiếu niên sáng tạo”, bạn Trí Bình đã thiết kế được một chiếc mũ vải rộng vành có kích thước như hình vẽ. Hãy tính tổng diện tích vải cần để làm cái mũ đó biết rằng vành mũ hình tròn và ống mũ hình trụ (coi phần mép vải được may không đáng kể. Kết quả làm tròn đến hàng đơn vị). [ads] + Cho đường tròn tâm O bán kính R, đường kính AB. Điểm H bất kì thuộc đoạn OB, H khác O và B. Dây CD vuông góc với AB tại H. Đường thẳng d tiếp xúc với đường tròn tại A. Nối CO, DO cắt đường thẳng d tại M và N. Các đường thẳng CM và DN cắt đường tròn (O) lần lượt tại E và F (E ≠ C, F ≠ D). a) Chứng minh tứ giác MNFE nội tiếp. b) Chứng minh ME.MC = NF.ND. c) Tìm vị trí của điểm H để tứ giác AEOF là hình thoi. d) Lấy điểm K đối xứng với C qua A. Gọi G là trọng tâm tam giác KAB. Chứng minh rằng khi H di chuyển trên đoạn OB thì điểm G thuộc một đường tròn cố định. + Một trường THCS tổ chức cho 250 người bao gồm giáo viên và học sinh đi tham quan khu du lịch Đảo Ngọc Xanh. Biết giá vé vào cổng của một giáo viên là 80000 đồng, vé vào cổng của một học sinh là 60000 đồng. Nhà trường tổ chức đi vào đúng dịp Khai trương nên được giảm 5% cho mỗi vé vào cổng, vì vậy nhà trường chỉ phải trả tổng số tiền là 14535000 đồng. Hỏi có bao nhiêu giáo viên và học sinh của trường đi tham quan?
Đề thi HK2 Toán 9 năm 2018 - 2019 phòng GDĐT Nam Từ Liêm - Hà Nội
Đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Nam Từ Liêm – Hà Nội gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra toàn diện những kiến thức môn Toán mà học sinh khối lớp 9 đã được học trong học kỳ vừa qua, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Nam Từ Liêm – Hà Nội : + Cho phương trình: x^2 – 2mx – 4 = 0 (x là ẩn; m là tham số) (1). 1) Chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m. 2) Tìm m để phương trình (1) có 2 nghiệm x1 và x2 thỏa mãn: x1^2 + x2^2 = – 3x1x2. + Cho đường tròn (O;R), dây MN cố định (MN < 2R). Kẻ đường kính AB vuông góc với dây MN tại E. Lấy điểm C thuộc dây MN (C khác M, N, E), BC cắt đường tròn (O) tại điểm K (K khác B). 1) Chứng minh: Tứ giác AKCE nội tiếp được một đường tròn. 2) Chứng minh: BM2 = BK.BC. 3) Gọi I là giao điểm của AK và MN; D là giao điểm của AC và BI. a) Chứng minh: D thuộc (O;R). b) Chứng minh điểm C cách đều ba cạnh của ∆DEK. 4) Xác định vị trí điểm C trên dây MN để khoảng cách từ E đến tâm đường tròn ngoại tiếp ∆MCK nhỏ nhất.
Đề thi học kỳ 2 Toán 9 năm 2018 - 2019 phòng GDĐT Cầu Giấy - Hà Nội
Nhằm mục đích kiểm tra đánh giá chất lượng dạy và học môn Toán của giáo viên và học sinh lớp 9 trong giai đoạn học kỳ 2 năm học 2018 – 2019, vừa qua, phòng Giáo dục và Đào tạo quận Cầu Giấy – Hà Nội đã tổ chức kỳ thi học kỳ 2 Toán 9 năm học 2018 – 2019. Đề thi học kỳ 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Cầu Giấy – Hà Nội được biên soạn theo dạng đề tự luận, đề gồm 2 trang với 5 bài toán, thời gian học sinh làm bài là 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Cầu Giấy – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một ô tô đi từ A đến B cách nhau 90 km với vận tốc dự định. Khi từ B trở về A, ô tô đi với vận tốc nhanh hơn vận tốc lúc đi là 5 km/h. Do đó thời gian vế ít hơn thời gian đi là 15 phút. Tính vận tốc dự định của ô tô đi từ A đến B. [ads] + Một hộp sữa hình trụ có đường kính đáy là 12 cm, chiều cao 10 cm. Tính diện tích vật liệu dùng để tạo nên một vỏ hộp như vậy (không tính phần mép nổi). + Cho đường tròn (O;R), từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC với (O) (B, C lần lượt là các tiếp điểm). a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. b) Gọi D là trung điểm của AC, BD cắt đường tròn tại E, đường thẳng AE cắt đường tròn (O) tại điểm thứ hai là F. Chứng minh AB2 = AE.AF. c) Chứng minh BC = CF.