Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2018 - 2019 sở GDĐT TP HCM

Thứ Tư ngày 13 tháng 03 năm 2019, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi Toán 9 cấp thành phố năm học 2018 – 2019. Đề thi học sinh giỏi Toán 9 năm 2018 – 2019 sở GD&ĐT TP HCM gồm 05 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2018 – 2019 sở GD&ĐT TP HCM : + An khởi hành từ Sài Gòn đi Biên Hòa. Sau đó 5 phút, Bình và Cường khởi hành từ Biên Hòa về Sài Gòn. Trên đường đi, An gặp Cường ở địa điểm C rồi gặp Bình ở địa điểm D. Tính vận tốc của mỗi người, biết rằng quang đường Sài Gòn – Biên Hòa dài 39 km; CD = 6 km; Vận tốc của An bằng 1,5 vận tốc của Bình và bằng 3/4 vận tốc của Cường. [ads] + Hộp phô mai có dạng hình trụ, đường kính đáy 12,2 cm và chiều cao 2,1 cm. a) Biết rằng 8 miếng phô mai được xếp nằm sát bên trong hộp và độ dày của giấy gói từng miếng không đáng kể. Hỏi thể tích của một miếng phô mai là bao nhiêu? b) Tính diện tích giấy gói được sử dụng cho một miếng phô mai. (Ghi kết quả gần đúng chính xác đến 1 chữ số thập phân sau dấu phẩy). + Cho tam giác ABC cân tại A, nội tiếp đường tròn (O). Từ B kẻ đường thẳng vuông góc với OC, đường thẳng này cắt AC tại D và cắt (O) tại E (E khác B). Cho biết AB = 8 cm và BC = 4 cm, tính độ dài các đoạn thẳng DE, OA và OD.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Thái Nguyên : + Cho tập hợp X = {0; 1; 2; …; 20}. Gọi Y là tập hợp con bất kỳ gồm có 7 phần tử của tập hợp X. Chứng minh rằng tồn tại hai tập hợp con A và B của tập hợp Y (A khác B, A khác Ø, B khác Ø) sao cho tổng các phần tử của tập hợp A bằng tổng các phần tử của tập hợp B. + Trong mặt phẳng tọa độ Oxy, gọi A, B lần lượt là tọa độ giao điểm của đường thẳng (d): y = x – 2 với trục hoành và trục tung. Tính diện tích tam giác OAB và khoảng cách từ điểm O đến đường thẳng (d). b. Giải phương trình x2 + 4 = 3x + 2x – 1. c. Trên parabol (P): y = x² lấy ba điểm phân biệt A(a;a2), B(b;b2), C(c;c2) sao cho a2 – b = b2 – c = c2 – a. Tính giá trị biểu thức sau: T = (a + b + 1)(b + c + 1)(c + a + 1). + Tìm số tự nhiên n sao cho n + 3 là số nguyên tố và 2n + 7 là lập phương của một số tự nhiên.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT thành phố Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Đà Nẵng; kỳ thi được diễn ra vào sáng thứ Năm ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT thành phố Đà Nẵng : + Trong phòng họp của công ty có một số ghế dài. Nếu xếp mỗi ghế bốn người dự họp thì thiếu một ghế. Nếu xếp mỗi ghế năm người dự họp thì thừa một ghế. Hỏi phòng họp của công ty có bao nhiêu ghế và bao nhiêu người dự họp? + Cho tam giác ABC, gọi M là trung điểm cạnh BC. Trên tia đối của tia CA lấy điểm D (DC > AC). Gọi N là trung điểm đoạn AD, kẻ đường thẳng qua D song song MN, cắt AB tại E. Hai đường thẳng EC và BD cắt nhau tại O. Chứng minh rằng tam giác ODE và tứ giác ABOC có diện tích bằng nhau. + Cho hình vuông ABCD tâm O. Lấy điểm E trên đoạn AB (E khác B và A), gọi F là giao điểm của CE và DA, đường thẳng DE cắt đường tròn (O;OA) tại điểm K (K khác D). Qua K kẻ tiếp tuyến KH với đường tròn (O;AB/2) (H thuộc (O;OA) và nằm khác phía với D qua FC). a) Chứng minh rằng tứ giác KHDA là hình thang cân. b) Chứng minh rằng F, K, H thẳng hàng.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp quận môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Nam Từ Liêm – Hà Nội : + Có 75 bóng đèn gồm 30 bóng xanh, 25 bóng đỏ, 20 bóng vàng. Mỗi lượt người ta đổi màu của hai bóng khác màu sang màu thứ ba (chẳng hạn đổi màu một bóng xanh và một bóng đỏ thành hai bóng vàng). Có thể xảy ra được toàn bộ 75 bóng đèn đều cùng một màu hay không? Vì sao? + Cho tam giác ABC nội tiếp đường tròn (O). Đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với 3 cạnh BC, CA, AB lần lượt tại các điểm M, N, P. Gọi Q là hình chiếu vuông góc của M xuống NP (Q thuộc NP). Kẻ BH, CT lần lượt vuông góc với đường thẳng PN (H và T thuộc PN) a) Chứng minh: Tam giác BPH đồng dạng tam giác CNT b) Chứng minh: QM là tia phân giác góc BQC c) Gọi G là điểm chính giữa cung BAC của đường tròn (O). GM cắt (O) tại E. Chứng minh: A, Q, E thẳng hàng. + Cho a, b, c là các số thực khác 0 thỏa mãn: a b c. Chứng minh a, b, c đôi một khác nhau thì a2b2c2 = 1.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Vũng Tàu - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu.