Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 10 môn Toán lần 2 năm 2022 2023 trường THPT Lý Thái Tổ Bắc Ninh

Nội dung Đề khảo sát lớp 10 môn Toán lần 2 năm 2022 2023 trường THPT Lý Thái Tổ Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra khảo sát chất lượng môn Toán lớp 10 lần 2 năm học 2022 – 2023 trường THPT Lý Thái Tổ, tỉnh Bắc Ninh; đề thi hình thức 60% trắc nghiệm + 40% tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào ngày 20 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán lớp 10 lần 2 năm 2022 – 2023 trường THPT Lý Thái Tổ – Bắc Ninh : + Trong cuộc thi cắm hoa của Đoàn trường THPT Lý Thái Tổ nhân dịp 92 năm ngày thành lập Đoàn TNCS Hồ Chí Minh 26 / 3 / 2023. Ban giám khảo đã chọn ra được 12 học sinh đạt giải trong đó có 7 học sinh nam và 5 học sinh nữ. Đoàn trường muốn chọn ra 5 học sinh trong 12 học sinh trên để đi thi giao lưu cùng với các trường trong thành phố Từ Sơn. Tính xác xuất để sao cho trong 5 học sinh này có cả học sinh nam và học sinh nữ mà số lượng học sinh nữ nhiều hơn số lượng học sinh nam? + Trong một hộp có 30 chiếc thẻ cùng loại được viết các số 1, 2, 3, …, 30 sao cho mỗi thẻ chỉ viết một số và hai thẻ khác nhau viết hai số khác nhau. Chọn ngẫu nhiên 2 thẻ trong hộp. Xác suất để 2 thẻ được chọn có tích của hai số được viết trên đó là số chia hết cho 3. + Số đôi giày bán ra trong tháng 12 năm 2022 của một cửa hàng được thống kê trong bảng tần số sau: Cỡ giày 36 37 38 39 40 41 42 43 44. Tần số ( Số đôi giày bán được) 20 28 25 50 35 35 21 45 32. Mốt của mẫu số liệu trên là bao nhiêu? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 - 2017 sở GD và ĐT Hà Tĩnh
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 – 2017 sở GD và ĐT Hà Tĩnh gồm 5 bài toán tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD. Gọi M là trung điểm của đoạn thẳng BC và N là điểm thuộc đoạn thẳng AC sao cho AC = 4AN. Đường thẳng DM có phương trình y – 1 = 0 và N(1/2;-3/2). Xác định tọa độ điểm A. + Tập hợp X có 2^n phần tử được chia thành các tập con đôi một không giao nhau. Xét quy tắc chuyển phần tử giữa các tập như sau: nếu A, B là các tập con của X và số phần tử của A không nhỏ hơn số phần tử của B thì ta được phép chuyển từ tập A vào tập B số phần tử bằng số phần tử của tập B. Chứng minh rằng sau một số hữu hạn các bước chuyển theo quy tắc trên, ta nhận được tập X.
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 - 2017 sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 – 2017 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Một nông trại dự định trồng cà rốt và khoai tây trên khu đất có diện tích 5 ha. Để chăm bón ác loại cây này, nông trại phải dùng phân vi sinh. Nếu trồng cà rốt trên 1 ha cần dùng 3 tấn phân vi sinh và thu được 50 triệu đồng tiền lãi. Nếu trồng khoai tây trên 1 ha cần dùng 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tổng số tiền lãi cao nhất? Biết rằng số phân vi sinh cần dùng không được vượt quá 18 tấn. + Cho hình bình hành ABCD. Gọi M là trung điểm cạnh CD; N là điểm thuộc cạnh AD sao cho AN = 1/3AD. Gọi G là trọng tâm tam giác BMN, đường thẳng AG cắt BC tại K. Tính tỉ số BK/BC.
Đề thi học sinh giỏi Toán 10 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán 10 cấp tỉnh năm học 2016 – 2017 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 10 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Với giá trị nào của m thì đồ thị hàm số 2 y mx m x m 3 6 cắt trục hoành tại 2 điểm phân biệt có hoành độ 1 x và 2 x thỏa mãn điều kiện 1 2 x x 2 1. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm A 1 3 đường phân giác trong góc A có phương trình xy20 tâm đường tròn ngoại tiếp tam giác ABC là I 3 6. Viết phương trình đường thẳng BC, biết diện tích tam giác ABC gấp 4 lần diện tích tam giác IBC. + Cho tam giác ABC nhọn, không cân nội tiếp đường tròn (O) có đường cao AH H BC và tâm đường tròn nội tiếp là I. Gọi M là điểm chính giữa cung nhỏ BC của (O) và D là điểm đối xứng với A qua O. Đường thẳng MD cắt các đường thẳng BC, AH theo thứ tự tại P và Q. Chứng minh rằng tam giác IPQ vuông.