Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 1 (HK1) Toán 9 năm 2021 2022 trường M.V. Lômônôxốp Hà Nội

Nội dung Đề thi giữa học kì 1 (HK1) Toán 9 năm 2021 2022 trường M.V. Lômônôxốp Hà Nội Bản PDF - Nội dung bài viết Đề thi giữa kì 1 Toán 9 năm 2021 - 2022 trường M.V. Lômônôxốp Hà Nội Đề thi giữa kì 1 Toán 9 năm 2021 - 2022 trường M.V. Lômônôxốp Hà Nội Đề thi giữa kì 1 môn Toán lớp 9 năm học 2021 - 2022 của trường THCS & THPT M.V. Lômônôxốp Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Dưới đây là một số câu hỏi trong đề thi: 1. Cho hàm số bậc nhất y = 2x + 3 có đồ thị là đường thẳng (d). Hỏi đoạn thẳng (d) có đoạn nào và tính khoảng cách từ điểm N(0;1) đến đường thẳng (d). 2. Trong hình vẽ, một cái thang dài 5m đặt dựa vào tường. Tính chiều cao mà thang chạm vào tường, biết góc tạo bởi chân thang và mặt đất là 62 độ. 3. Cho tam giác ABC nhọn với đường cao AH. Tính độ dài các cạnh, góc ABC, và chứng minh một số tính chất của tam giác như việc các điểm A, E, H, F cùng thuộc một đường tròn. Với nội dung bài thi đa dạng và phong phú như vậy, học sinh sẽ cần phải áp dụng kiến thức và kỹ năng toán học một cách linh hoạt và sáng tạo để giải quyết các bài toán. Đề thi sẽ giúp học sinh rèn luyện khả năng tư duy logic, xử lý vấn đề và giải quyet bài toán một cách chính xác.

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Archimedes Academy - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Archimedes Academy, quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Archimedes Academy – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Archimedes Academy – Hà Nội : + Cho hàm số y m xm 1 2 (với tham số m ≠ −1) có đồ thị là đường thẳng d. a) Tìm m để đồ thị hàm số đi qua điểm M 2 1 b) Vẽ đồ thị hàm số ứng với giá trị m tìm được ở câu a trên hệ trục tọa độ Oxy và gọi A B lần lượt là giao điểm của đồ thị hàm số này với các trục Ox Oy. Tính độ dài đoạn AB và diện tích ∆AOB. + Cho đường tròn tâm O đường kính AB. Trên đoạn OB lấy điểm H sao cho HB HO. Qua H kẻ dây CD vuông góc với AB. a) Nếu cho biết thêm CAB 30 và AC 8cm. Tính độ dài bán kính đường tròn O và độ dài dây CD (giả thiết thêm này chỉ dùng riêng cho câu a không dùng để làm những câu còn lại). b) Lấy điểm I nằm trong tam giác ACH sao cho BI BC. Chứng minh 2 BI BH BA và BIH BAI. c) Gọi giao điểm của AI và CH là K. Qua I kẻ đường thẳng vuông góc với AK, đường thẳng này cắt đường thẳng CD tại P. Giả sử BK song song với IH. Khi đó: 1) Chứng minh: 2 KB KI KA KH KP và KBP 90 2) Chứng minh: OI OH. + Cho các số thực a, b, c ≥ 1 thỏa mãn ab bc ca 4. Tìm giá trị lớn nhất của biểu thức P a bc.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Cao Dương - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Cao Dương, Thanh Oai, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Cao Dương – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Cao Dương – Hà Nội : + Cho hai biểu thức. a) Tính giá trị của biểu thức A khi x = 16. b) Rút gọn biểu thức B. c) Tìm giá trị nhỏ nhất của biểu thức S AB. + Cho tam giác ABC vuông tại A. a) Giả sử khi AB cm 9 AC cm 12. Tính cạnh BC và các góc còn lại của tam giác ABC (làm tròn đến độ). b) Gọi H là hình chiếu của A trên BC; E F lần lượt là hình chiếu của H trên AB AC. Tính EF. c) Chứng minh rằng: AE AB AF AC. d) Gọi K là trung điểm của BC biết AK cắt EF tại I. Chứng tỏ rằng AK vuông góc với EF. + Giải phương trình sau.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Mễ Trì - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Mễ Trì, quận Từ Liêm, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Mễ Trì – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Mễ Trì – Hà Nội : + Cho tam giác ABC vuông tại A có AB AC 6cm 8cm. Vẽ AH vuông góc BC tại H. a) Tính AH HB HC b) Gọi E F lần lượt là hình chiếu của H trên AB và AC. Gọi O là giao điểm của AH và EF. Chứng minh 4 điểm AEFH cùng thuộc một đường tròn và HB HC OE OF 4. c) Gọi M là trung điểm BC. Chứng minh 1 2 AEMF ABC S S. + Một tòa nhà có chiều cao h m. Khi tia nắng tạo với mặt đất một góc 55° thì bóng của tòa nhà trên mặt đất dài 15m. Tính chiều cao h của tòa nhà (làm tròn đến chữ số thập phân thứ hai). + Với các số thực dương x y thỏa mãn x y 1. Tìm giá trị nhỏ nhất của biểu thức 1 1 2 2 P 1 x y.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Nam Từ Liêm - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Nam Từ Liêm, quận Từ Liêm, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Nam Từ Liêm – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Nam Từ Liêm – Hà Nội : + Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng 30° và bóng của một tháp trên mặt đất dài 92 m. Tính chiều cao của tháp (kết quả làm tròn đến số thập phân thứ hai). + Cho tam giác vuông ABC AB AC có đường cao AH a) Chứng minh rằng 2 2 AB AC BH CH. b) Biết C 60 AC 8 cm AB 12 cm. Giải tam giác vuông HAB. c) Kẻ AF là phân giác của BAC. Chứng minh rằng sin 2 ACF S CF AC ACH. Từ đó suy ra 21 1 AF AB AC. + Cho 1 2 a P a và 3 2 1 1 2 1 1 1 1 a a aa Q a a a a a với a a 0 1 4 a) Tính giá trị của P tại a thỏa mãn a a 5 60. b) Rút gọn Q. c) Tìm a nguyên để 4Q P nhận giá trị nguyên.