Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng cấp số nhân

Tài liệu gồm 37 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề cấp số nhân, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3: Dãy Số, Cấp Số Cộng Và Cấp Số Nhân. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Nắm vững khái niệm cấp số nhân. + Nắm được tính chất 3 số hạng liên tiếp của một cấp số nhân. + Nắm được công thức tổng quát, công thức tính tổng n số hạng đầu của một cấp số nhân. Kĩ năng: + Nhận biết được một cấp số nhân dựa vào định nghĩa. + Tìm được yếu tố còn lại khi biết 3 trong 5 yếu tố: số hạng đầu, số hạng thứ k, tổng n số hạng đầu tiên, công bội, số số hạng của cấp số nhân. + Áp dụng tính chất cấp số nhân vào các bài toán giải phương trình, chứng minh đẳng thức, bất đẳng thức. + Ứng dụng vào các bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. + Dạng 1: Chứng minh một dãy (un) là cấp số nhân. + Dạng 2: Xác định số hạng đầu, số hạng thứ k, công bội, tổng n số hạng đầu tiên của cấp số nhân. + Dạng 3: Dựa vào tính chất của cấp số nhân, chứng minh đẳng thức, giải phương trình và ứng dụng bài toán thực tế. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.

Nguồn: toanmath.com

Đọc Sách

Kĩ thuật tính giới hạn của dãy số cho bởi công thức truy hồi - Huỳnh Đoàn Thuần
Tài liệu gồm 24 trang trình bày kĩ thuật tính giới hạn của dãy số cho bởi công thức truy hồi, các dạng toán trong tài liệu gồm: + Dạng 1: Tính giới hạn của dãy số cho bởi hệ thức truy hồi bằng cách xác đinh CTTQ của dãy + Dạng 2: Tính giới hạn của dãy số cho bởi hệ thức truy hồi bằng cách sử dụng nguyên lý kẹp + Dạng 3: Tính giới hạn của dãy số cho bởi hệ thức truy hồi bằng cách sử dụng tính đơn điệu và bị chặn [ads]
Phân dạng bài tập về phương pháp quy nạp toán học và dãy số
Tài liệu gồm 14 trang phân dạng và hướng dẫn giải chi tiết các bài toán về phương pháp quy nạp toán học và dãy số. $1 – Phương pháp quy nạp toán học: A – Tóm tắt SGK B – Giải toán C – Bài tập rèn luyện D – Hướng dẫn, đáp số [ads] $2 – Dãy số A – Tóm tắt SGK B – Giải toán + Dạng 1: Xác định các số hạng của dãy số + Dạng 2: Xác định số hạng tông quát (SHTQ) của dãy số cho bởi hệ thức truy hồi + Dạng 3: Chứng minh dãy số tăng, giảm (xét tính đơn điệu) + Dạng 4: Xét tính bị chặn C – Bài tập rèn luyện D – Hướng dẫn, đáp số
Trắc nghiệm dãy số, cấp số cộng và cấp số nhân trong các đề thi thử Toán 2018
Tài liệu gồm 86 trang tổng hợp, phân loại và giải chi tiết các câu hỏi và bài tập trắc nghiệm dãy số, cấp số cộng và cấp số nhân trong các đề thi thử Toán 2018. Trích dẫn tài liệu trắc nghiệm dãy số, cấp số cộng và cấp số nhân trong các đề thi thử Toán 2018 : + (THPT Thạch Thành 2 – Thanh Hóa – lần 1 năm 2017 – 2018) Trong các phát biểu sau, phát biểu nào là sai? A. Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. B. Một cấp số cộng có công sai dương là một dãy số dương. C. Một cấp số cộng có công sai dương là một dãy số tăng. D. Dãy số có tất cả các số hạng bằng nhau là một cấp số cộng. [ads] + (THPT Chuyên Hùng Vương – Phú Thọ – lần 1 – NH 2017 – 2018) Trong các phát biểu sau, phát biểu nào là sai? A. Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. B. Dãy số có tất cả các số hạng bằng nhau là một cấp số cộng. C. Một cấp số cộng có công sai dương là một dãy số tăng. D. Một cấp số cộng có công sai dương là một dãy số dương. + (ĐHQG TPHCM – Cơ Sở 2 – năm 2017 – 2018) Người ta trồng 465 cây trong một khu vườn hình tam giác như sau: Hàng thứ nhất có 1 cây, hàng thứ hai có 2 cây,  hàng thứ ba có 3 cây …. Số hàng cây trong khu vườn là?
80 câu trắc nghiệm cấp số cộng, cấp số nhân - Hứa Lâm Phong
Tài liệu gồm 8 trang tuyển chọn 80 câu trắc nghiệm cấp số cộng, cấp số nhân có đáp án do thầy Hứa Lâm Phong biên soạn. Trích một số bài toán trong tài liệu : 1. Cho cấp số cộng có 4 số hạng trong đó tổng của chúng bằng 22, tổng bình phương bằng 166. Bốn số hạng của cấp số cộng là? 2. Tam giác ABC có ba góc A, B, C lập thành một cấp số nhân có công bội bằng 2. Ba góc A, B, C biết A< B< C lần lượt là? 3. Số các số hạng trong một cấp số cộng là chẵn. Tổng các số hạng thứ lẻ và các số hạng thứ chữan lần lượt là 24 và 30. Biết số hạng cuối lớn hơn số hạng đầu là 10,5; số các số hạng là bao nhiêu? Đáp số của bài toán là: A. 20   B. 18 C. 12   D. 8 [ads]