Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 12 lần 2 năm 2019 - 2020 trường THPT Đồng Đậu - Vĩnh Phúc

Ngày … tháng 11 năm 2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi Toán 12 cấp trường lần thứ 2 năm học 2019 – 2020, nhằm tiếp tục tuyển chọn các em học sinh giỏi Toán 12 vào đội tuyển của trường, đồng thời giúp đội tuyển nhà trường rèn luyện, hướng đến kỳ thi học sinh giỏi Toán THPT cấp tỉnh. Đề thi HSG Toán 12 lần 2 năm học 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc được biên soạn theo hình thức tự luận, đề gồm 01 trang với 10 bài toán, thời gian làm bài 180 phút, nội dung đề bao quát chương trình Toán 10, Toán 11 và Toán 12, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán 12 lần 2 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc : + Một mảnh đất hình chữ nhật ABCD có chiều dài AB = 25m, chiều rộng AD = 20m được chia thành hai phần bằng nhau bởi vạch chắn MN (M, N lần lượt là trung điểm BC và AD). Một đội xây dựng làm một con đường đi từ A đến C qua vạch chắn MN, biết khi làm đường trên miền ABMN mỗi giờ làm được 15m và khi làm trong miền CDNM mỗi giờ làm được 30m. Tính thời gian ngắn nhất mà đội xây dựng làm được con đường đi từ A đến C. [ads] + Trong cuộc thi: “Thiết kế và trình diễn các trang phục dân tộc” do Đoàn trường THPT Đồng Đậu tổ chức vào tháng 11 năm 2019 với thể lệ mỗi lớp tham gia một tiết mục. Kết quả có 12 tiết mục đạt giải trong đó có 4 tiết mục khối 12, có 5 tiết mục khối 11và 3 tiết mục khối 10. Ban tổ chức chọn ngẫu nhiên 5 tiết mục biểu diễn chào mừng 26 tháng 3. Tính xác suất sao cho khối nào cũng có tiết mục được biểu diễn và trong đó có ít nhất hai tiết mục của khối 12. + Cho hình hộp đứng ABCD.A1B1C1D1 có các cạnh AB = AD = 2, AA1 = √3 và góc BAD = 60 độ. Gọi M, N lần lượt là trung điểm của các cạnh A1D1 và A1B1. Chứng minh rằng AC1 vuông góc với mặt phẳng (BDMN). + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 3, BC = 6, mặt phẳng (SAB) vuông góc với đáy, các mặt phẳng (SBC) và (SCD) cùng tạo với mặt phẳng (ABCD) các góc bằng nhau. Biết khoảng cách giữa hai đường thẳng SA và BD bằng 6. Tính thể tích khối chóp S.ABCD và cosin góc giữa hai đường thẳng SA và BD. + Trong mặt phẳng với hệ tọa độ (Oxy), cho tam giác ABC ngoại tiếp đường tròn tâm J(2;1). Biết đường cao xuất phát từ đỉnh A của tam giác ABC có phương trình: 2x + y – 10 = 0 và D(2;-4) là giao điểm thứ hai của AJ với đường tròn ngoại tiếp tam giác ABC. Tìm tọa độ các đỉnh của tam giác ABC biết B có hoành độ âm và B thuộc đường thẳng có phương trình x + y + 7 = 0.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập đề thi học sinh giỏi lớp 12 môn Toán sở GD ĐT Quảng Bình (2013 2023)
Nội dung Tuyển tập đề thi học sinh giỏi lớp 12 môn Toán sở GD ĐT Quảng Bình (2013 2023) Bản PDF Tài liệu gồm 76 trang, được tổng hợp bởi thầy giáo Nguyễn Minh Hiếu, tuyển tập 10 đề thi chọn học sinh giỏi môn Toán lớp 12 sở Giáo dục và Đào tạo tỉnh Quảng Bình (từ năm 2013 đến năm 2023), có đáp án và lời giải chi tiết. Mục lục : PHẦN I . ĐỀ THI 1. 1 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2022 – 2023 (Trang 3). 2 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2021 – 2022 (Trang 8). 3 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2020 – 2021 (Trang 9). 4 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2019 – 2020 (Trang 10). 5 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2018 – 2019 (Trang 11). 6 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2017 – 2018 (Trang 12). 7 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2016 – 2017 (Trang 13). 8 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2015 – 2016 (Trang 14). 9 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2014 – 2015 (Trang 15). 10 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2013 – 2014 (Trang 16). PHẦN II . LỜI GIẢI 17. 1 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2022 – 2023 (Trang 19). 2 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2021 – 2022 (Trang 35). 3 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2020 – 2021 (Trang 39). 4 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2019 – 2020 (Trang 43). 5 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2018 – 2019 (Trang 47). 6 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2017 – 2018 (Trang 52). 7 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2016 – 2017 (Trang 56). 8 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2015 – 2016 (Trang 61). 9 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2014 – 2015 (Trang 65). 10 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2013 – 2014 (Trang 69).
Đề thi Olympic môn Toán năm 2023 trường THPT chuyên KHTN Hà Nội
Nội dung Đề thi Olympic môn Toán năm 2023 trường THPT chuyên KHTN Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi Olympic môn Toán năm 2023 trường THPT chuyên Khoa học Tự nhiên, thành phố Hà Nội. Trích dẫn Đề thi Olympic môn Toán năm 2023 trường THPT chuyên KHTN – Hà Nội : + Cho dãy số (an) thỏa mãn a1 = 7 và an + 1 = an(3an − 22n + 1) với mọi số nguyên dương n. Chứng minh rằng nếu p là ước nguyên tố của a2023 thì p − 1 chia hết cho 3. + Cho tam giác ABC (AB < AC) nội tiếp trong đường tròn (O) với phân giác trong AD (D nằm trên cạnh BC). M là trung điểm BC. AM cắt lại (O) tại N. J là trung điểm cung BC chứa A của (O). Trên (O) lấy các điểm S và T sao cho JS k AB và JT k AC. a) Chứng minh rằng đường thẳng ST đi qua tâm đường tròn ngoại tiếp của tam giác ADN. b) Lấy P thuộc (O) sao cho NP = AJ. Gọi giao điểm của P B và P C lần lượt với JS và JT là Q và R. Chứng minh rằng Q, R, D thẳng hàng. + Cho hình thang ABCD vuông tại A và B với BC < AD. Gọi ω là đường tròn tâm C đi qua B. Giả sử là một tiếp tuyến của ω sao cho vuông góc với BD đồng thời cắt tia đối tia AB tại E. F thuộc đường thẳng CD sao cho EF k AD. P là hình chiếu vuông góc của F trên M là trung điểm của cạnh AB. Chứng minh rằng đường tròn ngoại tiếp tam giác EPM tiếp xúc với ω.
Đề thi HSG lớp 12 môn Toán lần 4 năm 2022 2023 trường THPT Giao Thủy Nam Định
Nội dung Đề thi HSG lớp 12 môn Toán lần 4 năm 2022 2023 trường THPT Giao Thủy Nam Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử học sinh giỏi môn Toán lớp 12 THPT lần 4 năm học 2022 – 2023 trường THPT Giao Thủy, tỉnh Nam Định; đề thi gồm hai phần: Phần I: Trắc nghiệm (Thí sinh chọn một đáp án viết câu trả lời vào tờ giấy thi) và Phần II: Viết đáp án (Thí sinh viết câu trả lời vào tờ giấy thi theo hàng dọc, viết rõ đơn vị nếu có); thời gian làm bài: 120 phút; đề thi có ma trận, đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề thi HSG Toán lớp 12 lần 4 năm 2022 – 2023 trường THPT Giao Thủy – Nam Định : + Một cuộn đề can hình trụ có đường kính 44,9 cm. Trong thời gian diễn ra AFF cup 2018, người ta đã sử dụng để in các băng rôn, khẩu hiệu cổ vũ cho đội tuyển Việt Nam, do đó đường kính của cuộn đề can còn lại là 12,5 cm. Biết độ dày của tấm đề can là 0,06 cm, hãy tính chiều dài L của tấm đề can đã sử dụng? (Làm tròn đến hàng đơn vị). + Người ta nối trung điểm các cạnh của một hình hộp chữ nhật rồi cắt bỏ các hình chóp tam giác ở các góc của hình hộp như hình vẽ bên. Hình còn lại là một đa diện có số đỉnh và số cạnh là A. đỉnh cạnh. B. đỉnh cạnh. C. đỉnh cạnh. D. đỉnh cạnh. + Cho đồ thị hàm số và như hình vẽ bên. Biết đồ thị của hàm số là một Parabol đỉnh có tung độ bằng và là một hàm số bậc ba. Hoành độ giao điểm của hai đồ thị là thỏa mãn. Diện tích hình phẳng giới hạn bởi 2 đồ thị hàm số và gần nhất với giá trị nào dưới đây? File WORD (dành cho quý thầy, cô):
Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Nam Định
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Nam Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm hai phần: Phần I: Trắc nghiệm (thí sinh chọn một đáp án và ghi vào tờ giấy thi) và Phần II: Viết đáp án (viết câu trả lời vào tờ giấy thi theo hàng dọc, viết đơn vị nếu có), thời gian làm bài: 120 phút; đề thi có đáp án MÃ ĐỀ 201 MÃ ĐỀ 202 MÃ ĐỀ 203 MÃ ĐỀ 204. Trích dẫn Đề thi chọn học sinh giỏi Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho hai hình cầu có bán kính lần lượt là r cm 1 5 và r cm 2 10 tiếp xúc với nhau. Một hình nón (N) có các đường sinh tiếp xúc với hai hình cầu và có mặt đáy tiếp xúc với hình cầu lớn như hình vẽ. Diện tích xung quanh của hình nón (N) bằng? + Cho khối trụ T có trục OO’, bán kính r = 6 và thể tích là V. Cắt khối trụ T thành hai phần bởi mặt phẳng song song với trục và cách trục OO’ một khoảng bằng 3 (tham khảo hình vẽ). Gọi V1 là thể tích phần không chứa trục OO’. Tính tỉ số V1/V. + Cho hàm số 43 2 f x mx nx px qx r. Biết rằng đồ thị hàm số y fx cắt trục hoành tại ba điểm có hoành độ abc theo thứ tự lập thành cấp số cộng có công sai d > 0. Gọi S là tập hợp các nghiệm của phương trình 2 d fx fb. Hỏi tập S có bao nhiêu phần tử? File WORD (dành cho quý thầy, cô):