Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán chứa căn Nguyễn Tiến

Nội dung Giải bài toán chứa căn Nguyễn Tiến Bản PDF - Nội dung bài viết Giải bài toán chứa căn Nguyễn Tiến - Tài liệu tổng hợp kiến thức căn thức cho học sinh lớp 9 Giải bài toán chứa căn Nguyễn Tiến - Tài liệu tổng hợp kiến thức căn thức cho học sinh lớp 9 Tài liệu "Giải bài toán chứa căn" được biên soạn bởi thầy giáo Nguyễn Tiến, gồm 89 trang nhằm giúp học sinh lớp 9 nắm vững phương pháp giải các bài toán chứa căn. Tài liệu tập trung vào các dạng bài tập căn thức cơ bản, phù hợp với đối tượng học sinh cần củng cố kiến thức và ôn tập chuẩn bị cho kỳ thi vào lớp 10. Tài liệu được chia thành nhiều phần, từ việc tìm hiểu về căn bậc hai, đến điều kiện xác định biểu thức có nghĩa và các bài toán rút gọn biểu thức chứa căn. Các dạng toán chứa căn được phân loại rõ ràng, từ dạng đơn giản đến phức tạp, giúp học sinh hiểu rõ vấn đề và rèn luyện kỹ năng giải toán. Đặc biệt, tài liệu cũng cung cấp các bài tập tổng hợp phong phú và hướng dẫn giải chi tiết, giúp học sinh rèn luyện kỹ năng giải toán căn thức một cách hiệu quả. Bên cạnh đó, có cả các bài toán phụ yêu cầu tư duy linh hoạt và sáng tạo từ học sinh. Trên cơ sở nội dung này, học sinh sẽ có cơ hội nắm vững kiến thức căn thức, rèn luyện tư duy logic và xây dựng nền tảng vững chắc cho việc học toán ở cấp độ cao hơn.

Nguồn: sytu.vn

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai Tài liệu học Toán lớp 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai Tài liệu này bao gồm 22 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết để học sinh dễ dàng tự học và tự kiểm tra kiến thức của mình. A. Tóm tắt lý thuyết: Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Khử mẫu của biểu thức lấy căn. Rút gọn biểu thức chứa căn bậc hai. Trục căn thức ở mẫu. B. Bài tập và các dạng toán: Dạng 1: Đưa thừa số ra ngoài hoặc vào trong dấu căn. Dạng 2: So sánh các căn bậc hai. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Khử mẫu của biểu thức dưới dấu căn bậc hai. Dạng 5: Trục căn thức ở mẫu. Dạng 6: Sử dụng phép biến đổi căn thức bậc hai để giải phương trình. BÀI TẬP TRẮC NGHIỆM BÀI TẬP VỀ NHÀ File WORD dành cho quý thầy, cô để dễ dàng chỉnh sửa và sử dụng.
Tài liệu lớp 9 môn Toán chủ đề căn bậc ba
Nội dung Tài liệu lớp 9 môn Toán chủ đề căn bậc ba Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề căn bậc baTóm tắt lý thuyếtBài tập và các dạng toánBài tập trắc nghiệm và bài tập về nhà Tài liệu lớp 9 môn Toán chủ đề căn bậc ba Tài liệu này bao gồm 20 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến căn bậc ba trong chương trình môn Toán lớp 9. Tài liệu cũng đi kèm đáp án và lời giải chi tiết. Tóm tắt lý thuyết I. Căn bậc ba: Giải thích về căn bậc ba và cách tính toán với nó. II. Căn bậc n: Mở rộng kiến thức về căn bậc n. Bài tập và các dạng toán Dạng 1: Thực hiện phép tính có chứa căn bậc ba. Dạng 2: Khử mẫu thức chứa căn bậc ba. Dạng 3: So sánh các căn bậc ba. Dạng 4: Giải phương trình chứa căn bậc ba. Bài tập trắc nghiệm và bài tập về nhà - Bài tập trắc nghiệm để kiểm tra kiến thức đã học. - Bài tập về nhà giúp củng cố và ôn tập kiến thức. File WORD của tài liệu được cung cấp để quý thầy cô có thể sử dụng và in ấn dễ dàng.
Tài liệu lớp 9 môn Toán chủ đề căn bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề căn bậc hai Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề căn bậc haiPhần lý thuyếtPhần bài tập và các dạng toán Nội dung mới sau khi đã viết lại: Tài liệu lớp 9 môn Toán chủ đề căn bậc hai Tài liệu này bao gồm 25 trang với nội dung chi tiết về kiến thức cần nhớ, các dạng toán và bài tập liên quan đến căn bậc hai trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết để học sinh có thể tự học và ôn tập hiệu quả. Phần lý thuyết Trong phần này, học sinh sẽ được tóm tắt về khái niệm căn bậc hai, khái niệm về căn bậc hai số học, và cách so sánh các căn bậc hai số học với nhau. Phần bài tập và các dạng toán Tài liệu cung cấp các dạng toán phổ biến liên quan đến căn bậc hai như: tìm căn bậc hai và căn bậc hai số học của một số, tìm số có căn bậc hai số học là một số cho trước, tính giá trị của biểu thức chứa căn bậc hai, so sánh các căn bậc hai số học, tìm giá trị của x thỏa mãn điều kiện cho trước, và chứng minh một số là số vô tỷ. Ngoài ra, tài liệu cũng bao gồm bài tập trắc nghiệm và bài tập về nhà để học sinh có cơ hội ôn tập và kiểm tra kiến thức của mình. File WORD cũng được cung cấp để giáo viên có thể sử dụng trong việc giảng dạy và kiểm tra. Với nội dung đầy đủ và chi tiết, tài liệu này sẽ giúp học sinh nắm vững kiến thức về căn bậc hai và rèn luyện kỹ năng giải các dạng toán liên quan một cách hiệu quả.
Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép chia và phép khai phương
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép chia và phép khai phương Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép chia và phép khai phươngTóm tắt lý thuyếtBài tập và dạng toánBài tập thực hành Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép chia và phép khai phương Tài liệu này bao gồm 14 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến việc kết hợp giữa phép chia và phép khai phương trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết để học sinh dễ dàng hiểu và tự kiểm tra kiến thức của mình. Tóm tắt lý thuyết 1. Định lý quan trọng: Với mọi số A và B khác 0, ta có A^2 = B^2 khi và chỉ khi A = B hoặc A = -B. 2. Quy tắc khai phương và chia các căn bậc hai: Hướng dẫn cụ thể cách khai phương một thương và chia căn bậc hai của các số dương. Bài tập và dạng toán Để giúp học sinh ôn tập và nắm vững kiến thức, tài liệu cung cấp các dạng toán phổ biến như thực hiện phép tính, rút gọn biểu thức và giải phương trình. Mỗi dạng toán đều có cách giải chi tiết để học sinh hiểu rõ từng bước giải quyết. Cụ thể: Dạng 1: Thực hiện phép tính theo công thức khai phương một thương. Dạng 2: Rút gọn biểu thức bằng quy tắc khai phương một thương. Dạng 3: Giải phương trình chứa căn thức, lưu ý các điều kiện đi kèm. Bài tập thực hành Bên cạnh các dạng toán, tài liệu còn cung cấp bài tập trắc nghiệm và bài tập về nhà để học sinh tự luyện tập và kiểm tra kỹ năng của mình. Đồng thời, file Word cung cấp sẵn cho giáo viên để dễ dàng in ấn và sử dụng trong giảng dạy.