Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG cấp trường lớp 10 môn Toán năm 2017 2018 trường THPT Con Cuông Nghệ An

Nội dung Đề thi chọn HSG cấp trường lớp 10 môn Toán năm 2017 2018 trường THPT Con Cuông Nghệ An Bản PDF - Nội dung bài viết Đề thi chọn HSG cấp trường lớp 10 môn Toán năm 2017 2018 trường THPT Con Cuông Nghệ An Đề thi chọn HSG cấp trường lớp 10 môn Toán năm 2017 2018 trường THPT Con Cuông Nghệ An Đề thi chọn HSG cấp trường Toán lớp 10 năm 2017 – 2018 trường THPT Con Cuông – Nghệ An là bài thi quan trọng dành cho các học sinh giỏi để thử sức và phát triển năng khiếu toán học của mình. Đề thi gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), và đề thi đi kèm lời giải chi tiết. Trích dẫn đề thi chọn HSG cấp trường Toán lớp 10 năm 2017 – 2018: 1. Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn vtBD = 2/3.vtBC, vtAE = 1/4.vtAC. Điểm K trên đoạn thẳng AD sao cho 3 điểm B, K, E thẳng hàng. Tìm tỉ số AD/AK. 2. Trong mặt phẳng tọa độ Oxy cho tam giác ABC vuông tại B, AB = 2BC, D là trung điểm AB, E là điểm thuộc đoạn AC sao cho AC = 3EC, có phương trình CD: x – 3y + 1 = 0, E(16/3;1). a) Chứng minh rằng BE là phân giác trong của góc B. Tìm tọa độ điểm I là giao của CD và BE. b) Tìm tọa độ các đỉnh A, B, C, biết A có tung độ âm. Bài thi này không chỉ đòi hỏi kiến thức vững chắc của học sinh mà còn đề cao khả năng suy luận logic và giải quyết vấn đề. Chắc chắn sẽ là một thách thức đáng giá đối với các em học sinh yêu thích môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi lớp 10 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Hà Nam
Nội dung Đề học sinh giỏi lớp 10 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 10 môn Toán cấp tỉnh năm 2022-2023 sở GD ĐT Hà Nam Đề học sinh giỏi lớp 10 môn Toán cấp tỉnh năm 2022-2023 sở GD ĐT Hà Nam Xin chào quý thầy cô giáo và các em học sinh lớp 10! Hãy cùng Sytu tìm hiểu về đề thi chọn học sinh giỏi môn Toán lớp 10 THPT cấp tỉnh năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Hà Nam. Đề thi bao gồm 06 bài toán tự luận, thời gian làm bài 180 phút (không tính thời gian phát đề), kỳ thi sẽ diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn một số nội dung từ đề thi: Cho hàm số \(y = x^2 - 3x + 4\) có đồ thị là (P) và đường thẳng \(d\) có phương trình: \(y = 2x - m\) với \(m\) là tham số. Tìm tất cả các giá trị của \(m\) để \(d\) cắt (P) tại hai điểm phân biệt \(A, B\) sao cho \(OA^2 + OB^2 = 57\) với \(O\) là gốc tọa độ. Một xí nghiệp sản xuất hai loại sản phẩm, mỗi tấn sản phẩm I lãi 2 triệu đồng, mỗi tấn sản phẩm II lãi 2,2 triệu đồng. Xác định số tấn sản phẩm I và sản phẩm II cần sản xuất trong một ngày để thu được tổng số tiền lãi cao nhất, với điều kiện máy hoạt động bình thường và không vượt quá số giờ làm việc cho mỗi máy. Trong mặt phẳng Oxy, cho hình thang ABCD vuông tại A, D và \(AB = 2DC\). Tìm tọa độ các đỉnh A, B và D của hình thang ABCD. Hy vọng rằng với đề thi này, các em sẽ có cơ hội rèn luyện và phát triển khả năng giải các bài toán, từ đó nâng cao kiến thức và kỹ năng Toán của mình. Chúc các em thành công! Hãy cùng chúng tôi chờ đón những bước tiến mới trong hành trình chinh phục Toán của bạn!
Đề học sinh giỏi lớp 10 môn Toán năm 2022 2023 trường THPT Phùng Khắc Khoan Hà Nội
Nội dung Đề học sinh giỏi lớp 10 môn Toán năm 2022 2023 trường THPT Phùng Khắc Khoan Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 10 năm 2022 - 2023 THPT Phùng Khắc Khoan Hà Nội Đề học sinh giỏi Toán lớp 10 năm 2022 - 2023 THPT Phùng Khắc Khoan Hà Nội Sytu xin được giới thiệu đến quý thầy cô và các em học sinh lớp 10 đề thi chọn học sinh giỏi văn hóa cấp trường môn Toán lớp 10 năm học 2022 - 2023 trường THPT Phùng Khắc Khoan. Đề thi bao gồm các câu hỏi như sau: 1. Tìm phương trình parabol P 2y = ax^2 + bx + c biết rằng P đi qua ba điểm A, B, C. 2. Trong mọi tam giác ABC, gọi a, b, c lần lượt là độ dài các cạnh BC, AC, AB và S là diện tích tam giác ABC. Chứng minh rằng: 2cotA + 2cotB + 2cotC = 4abc/S. 3. Cho phương trình 2x^4 - 4x^2 + 5x - m = 0. Tìm tất cả các giá trị của tham số m để phương trình có bốn nghiệm thực phân biệt. Đề thi cung cấp đáp án và lời giải chi tiết, giúp các em học sinh ôn tập và nắm vững kiến thức để chuẩn bị cho kì thi học sinh giỏi sắp tới. Chúc các em thành công!
Đề HSG lớp 10 môn Toán năm 2022 2023 trường chuyên Lương Thế Vinh Đồng Nai
Nội dung Đề HSG lớp 10 môn Toán năm 2022 2023 trường chuyên Lương Thế Vinh Đồng Nai Bản PDF - Nội dung bài viết Đề HSG Toán lớp 10 năm 2022-2023 trường chuyên Lương Thế Vinh Đồng Nai Đề HSG Toán lớp 10 năm 2022-2023 trường chuyên Lương Thế Vinh Đồng Nai Xin chào quý thầy cô và các em học sinh lớp 10! Trong đề thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2022-2023 của trường THPT chuyên Lương Thế Vinh, tỉnh Đồng Nai, có những câu hỏi đầy thú vị đòi hỏi sự tư duy và logic cao. Trong đề thi, có câu hỏi về tam giác ABC không cân nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I), với điểm tiếp xúc của (I) là D, E, F tương ứng trên BC, CA, AB. Bạn cần chứng minh rằng OI và MN vuông góc nhau, ba đường thẳng MN, EF và AS đồng quy, cũng như đường thẳng qua K song song OI chia đôi EF. Ngoài ra, đề còn đề cập đến số nguyên dương an = 2^(n3 + 1) - 3^(n2 + 1) + 5^(n + 1). Bạn cần tìm các số nguyên tố p mà có vô hạn giá trị nguyên dương n mà an không chia hết cho p, và chứng minh rằng tồn tại vô hạn số nguyên tố p sao cho có giá trị nguyên dương n mà an chia hết cho p. Cuối cùng, đề còn liên quan đến các số thực đôi một khác nhau a1, a2, ..., an; b1, b2, ..., bn và công thức tính tích các số trên cột thứ i. Bạn cần chứng minh rằng đa thức P(x) - C là tích của n đa thức bậc nhất có hệ số ứng với x là 1, cũng như tích tất cả các số trên mỗi hàng cũng bằng nhau. Đề thi không chỉ là cơ hội để thể hiện kiến thức Toán mà còn là bài toán thách thức tư duy logic và sáng tạo của các em học sinh. Chúc các em thành công trong việc giải quyết các câu hỏi thú vị này!
Đề HSG lớp 10 môn Toán vòng 3 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội
Nội dung Đề HSG lớp 10 môn Toán vòng 3 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội Bản PDF - Nội dung bài viết Đề HSG lớp 10 Toán vòng 3 năm 2022 - 2023 trường THPT Nguyễn Gia Thiều Hà Nội Đề HSG lớp 10 Toán vòng 3 năm 2022 - 2023 trường THPT Nguyễn Gia Thiều Hà Nội Chào mừng đến với Đề thi HSG lớp 10 môn Toán vòng 3 năm học 2022 - 2023 của trường THPT Nguyễn Gia Thiều, thành phố Hà Nội. Đề thi này sẽ giúp các em học sinh lớp 10 ôn tập và chuẩn bị cho kì thi chọn học sinh giỏi cấp trường. Trong đề thi này, chúng ta sẽ đối mặt với các bài toán thú vị, như bài toán về việc đếm số học sinh giỏi theo từng môn, bài toán về thám hiểm vùng cực và cách di chuyển hiệu quả để trở về căn cứ trước khi bão tuyết ập đến, cũng như bài toán về nhịp tim và công thức tính nhịp tim tối đa ở các độ tuổi khác nhau. Bài toán đầu tiên yêu cầu chúng ta xác định số học sinh giỏi môn Võ trong lớp 10A, khi đã biết số học sinh giỏi ít nhất một môn. Bài toán thứ hai đưa ra tình huống đầy thách thức của đoàn thám hiểm và cách tính toán để di chuyển hiệu quả. Bài toán cuối cùng giúp chúng ta hiểu rõ về mối quan hệ giữa nhịp tim tối đa và độ tuổi, cũng như cách tính toán để tập thể dục hiệu quả. Hãy cùng rèn luyện kỹ năng giải toán, logic và khả năng suy luận thông qua các bài toán thú vị trong Đề HSG lớp 10 Toán vòng 3 năm 2022 - 2023. Chúc các em thành công và giải được nhiều bài toán hóc búa!