Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi hết học kỳ 2 Toán 12 năm 2017 - 2018 trường THPT Bình Minh - Ninh Bình

Đề thi hết học kỳ 2 Toán 12 năm 2017 – 2018 trường THPT Bình Minh – Ninh Bình được biên soạn theo hình thức trắc nghiệm 50 câu, thời gian làm bài 90 phút, nội dung đề không chỉ giới hạn trong chương trình HK2 Toán 12 mà bao hàm toàn bộ chương trình Toán 12, mục đích nhằm giúp các em ôn luyện để hướng đến kỳ thi THPT Quốc gia 2018. Trích dẫn đề thi hết học kỳ 2 Toán 12 năm 2017 – 2018 : + Cho hàm số y = f(x) xác định, liên tục trên và có bảng biến thiên như hình vẽ. Khẳng định nào sau đây là khẳng định đúng? A. Hàm số có hai điểm cực trị. B. Hàm số có giá trị lớn nhất bằng 1, và có giá trị nhỏ nhất bằng -1/3. C. Đồ thị hàm số không cắt trục hoành. D. Hàm số có giá trị cực đại bằng 3. [ads] + Cho (H) là đa giác đều 2n đỉnh nội tiếp đường tròn tâm O (n ∈ N*, n ≥ 2). Gọi S là tập hợp các tam giác có 3 đỉnh là các đỉnh của đa giác (H). Chọn ngẫu nhiên một tam giác thuộc tập S, biết rằng xác suất chọn một tam giác vuông trong tập S là 3/29. Tìm n? + Người ta cần sản xuất một chiếc cốc thủy tinh có dạng hình trụ không có nắp với đáy cốc và thành cốc làm bằng thủy tinh đặc, phần đáy cốc dày đều 1,5cm và thành xung quanh cốc dày đều 0,2cm (hình vẽ). Biết rằng chiều cao của chiếc cốc là 15cm và khi ta đổ 180ml nước vào cốc thì đầy cốc. Nếu giá thủy tinh thành phẩm được tính là 3 5 0 1cm 0 đ / thì giá tiền thủy tinh để sản xuất chiếc cốc đó gần nhất với số nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Cho elip E có độ dài trục lớn 1 2 A A 10, trục nhỏ 1 2 B B 8 và hai tiêu điểm F1, F2. Diện tích S của hình phẳng giới hạn bởi E và hai đường thẳng đi qua các tiêu điểm, vuông góc với trục lớn (tham khảo hình vẽ) nằm trong khoảng nào dưới đây? + Tính thể tích V của vật thể được giới hạn bởi hai mặt phẳng x a và x b biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x a x b thì được thiết diện có diện tích S x. Khẳng định nào sau đây đúng? + Cho các số phức z, w thỏa mãn z 1 và w i z. Biết rằng tập hợp các điểm biểu diễn số phức w trong mặt phẳng Oxy là một đường tròn. Tính bán kính r của đường tròn đó.
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Bình Tân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Bình Tân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Cho hình phẳng (H) được giới hạn bởi parabol, trục Ox và các đường thẳng x x 1 3. Diện tích của hình phẳng (H) là? + Trong không gian Oxyz, phương trình tham số của đường thẳng đi qua điểm M(3;-5;0) và song song với trục Oy là? + Trong không gian Oxyz, cho ba điểm A(1;-1;1), B(0;1;2), C(1;0;3). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THCS THPT Duy Tân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THCS THPT Duy Tân TP HCM Bản PDF Nhằm kiểm tra đánh giá chất lượng môn Toán lớp 12 giai đoạn cuối học kì 2, ngày … tháng … năm 2019, trường THCS – THPT Duy Tân, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán lớp 12 năm học 2018 – 2019. Đề thi học kì 2 Toán lớp 12 năm 2018 – 2019 trường THCS – THPT Duy Tân – TP HCM có mã đề 134, đề thi có 03 trang với 30 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2018 – 2019 trường THCS – THPT Duy Tân – TP HCM : + Thể tích của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi parabol y = √3.x^2, trục hoành và hai đường thẳng x = -1, x = 1 quanh trục hoành bằng? + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(3;0;0), B(0;–4;0), C(0;0;4). Viết phương trình mặt phẳng (R) đi qua ba điểm A, B, C. + Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;–1;3) và mặt phẳng (P): x – 2y + z – 1 = 0. Tìm tọa độ hình chiếu vuông góc H của M trên (P). File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THPT Phú Lâm TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THPT Phú Lâm TP HCM Bản PDF Nhằm kiểm tra đánh giá chất lượng môn Toán lớp 12 giai đoạn cuối học kì 2, ngày … tháng … năm 2019, trường THPT Phú Lâm, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán lớp 12 năm học 2018 – 2019. Đề thi học kì 2 Toán lớp 12 năm 2018 – 2019 trường THPT Phú Lâm – TP HCM có mã đề 985, đề thi có 07 trang với 30 câu trắc nghiệm và 03 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2018 – 2019 trường THPT Phú Lâm – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho điểm I(2;1;-3) và mặt phẳng (P) có phương trình là 3x + y – 2z + 1 = 0. a) Viết phương trình mặt cầu (S) tâm I và tiếp xúc với mặt phẳng (P). b) Tìm tọa độ tiếp điểm của mặt cầu (S) và mặt phẳng (P). [ads] + Cho số phức z = a – bi (a và b thuộc R). Mệnh đề nào sau đây đúng? A. Số phức z có phần thực bằng b, phần ảo bằng a. B. Số phức z có phần thực bằng a, phần ảo bằng b. C. Số phức z có phần thực bằng a, phần ảo bằng -b. D. Số phức z có phần thực bằng a, phần ảo bằng -bi. + Trong không gian Oxyz, cho tam giác ABC có A(1;1;1), B( 1;0;3), C(6;8;-10). Gọi M, N, K lần lượt là hình chiếu của trọng tâm tam giác ABC lên các trục Ox, Oy, Oz. Khi đó, mặt phẳng (MNK) có phương trình là?