Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ chia hết trên tập hợp số

Tài liệu gồm 56 trang được biên soạn bởi tác giả Trịnh Bình giới thiệu phương pháp giải và bài tập các dạng toán về quan hệ chia hết trên tập hợp số, tài liệu phù hợp với học sinh lớp 6 muốn tìm hiểu chuyên sâu và ôn thi học sinh giỏi môn Toán bậc Trung học Cơ sở. Các dạng toán được đề cập trong tài liệu chuyên đề quan hệ chia hết trên tập hợp số: Dạng toán 1 : Chứng minh tích các số nguyên liên tiếp chia hết cho một số cho trước. Đây là dạng toán cơ bản thường gặp khi chúng ta mới bắt đầu học chứng minh các bài toán chia hết. Sử dụng các tính chất cơ bản như: tích hai số nguyên liên tiếp chia hết cho 2, tích của ba số nguyên liên tiếp chia hết cho 6. Chúng ta vận dụng linh hoạt các tích chất cơ bản này để giải các bài toán chứng  minh chia hết về tích các số nguyên liên tiếp. Dạng toán 2 : Phân tích thành nhân tử. Để chứng minh A(x) chia hết cho p ta phân thích A(x) = D(x).p, còn nếu không thể đưa ra phân tích như vậy ta có thể viết p = kq. + Nếu (k;q) = 1, ta chứng minh A(x) chia hết cho k và q. + Nếu (k;q) khác 1, ta viết A(x) = B(x).C(x) rồi chứng minh B(x) chia hết cho k và C(x) chia hết cho q. Dạng toán 3 : Sử dụng phương pháp tách tổng. Để chứng minh A(x) chia hết cho p ta biết đổi A(x) thành tổng các hạng tử rồi chứng minh mỗi hạng tử chia hết cho p. Dạng toán 4 : Sử dụng hằng đẳng thức. [ads] Dạng toán 5 : Sử dụng phương pháp xét số dư. Để chứng minh A(n) chia hết cho p ta xét số n có dạng n = kp + r với r thuộc {0; 1; 2 … p – 1}. Dạng toán 6 : Sử dụng phương pháp phản chứng. Để chứng minh A(x) không chia hết cho n, ta giả sử A(x) chia hết cho n sau đó dùng lập luận để chỉ ra mâu thuẩn để chỉ ra điều giả sử là sai. Dạng toán 7 : Sử dụng phương pháp quy nạp. Để kiểm tra mệnh đề đúng với mọi số tự nhiên n ≥ p ta làm như sau: + Kiểm tra mệnh đề đúng với n = p. + Giả sử mệnh đề đúng mới n = k chứng minh mệnh đề đúng với n = k + 1. Dạng toán 8 : Sử dụng nguyên lý Dirichlet. Áp dụng nguyên lý Dirichle vào bài toán chia hết như sau: “Trong m = kn + 1 số có ít nhất n + 1 số chia hết cho k có cùng số dư”. Dạng toán 9 : Xét đồng dư. Sử dụng định nghĩa và các tính chất của đồng dư thức để giải bài toán chia hết. Dạng toán 10 : Sử dụng tính chất chia hết và áp dụng định lý Fermat nhỏ. Sử dụng tính chất chia hết và áp dụng định lý Fermat nhỏ để giải toán. Dạng toán 11 : Các bài toán quan hệ chia hết với đa thức. Dạng toán 12 : Tìm điều kiện biến để chia hết.

Nguồn: toanmath.com

Đọc Sách

Bài toán về quỹ tích - tập hợp điểm
Tài liệu gồm 59 trang, tuyển chọn bài toán về quỹ tích – tập hợp điểm hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ 1. Định nghĩa tập hợp điểm (quỹ tích). Một hình H được gọi là tập hợp điểm của những điểm M thoả mãn tính chất T khi nó chứa và chỉ chứa tính chất T. 2. Phương pháp chủ yếu giải bài toán tập hợp điểm. Để tìm tập hợp các điểm M thoả mãn tính chất T ta làm như sau: Bước 1: Tìm cách giải: – Xác định các yếu tố cố định và không đổi. – Xác định các điều kiện của điểm M. – Dự đoán tập hợp điểm. Bước 2: Trình bày lời giải: – Phần thuận: Chứng minh điểm M có tính chất T thuộc hình H. – Giới hạn: Căn cứ vào các vị trí đặc biệt của điểm M, chứng tỏ điểm M chỉ thuộc vào hình H, hoặc một phần B của hình H (nếu được). – Phần đảo: Chứng minh mọi điểm thuộc hình H (quỹ tích đã được giới hạn) có tính chất T. Thường làm như sau: + Lấy điểm M thuộc hình H (quỹ tích đã được giới hạn), giả sử tính chất T gồm n điều kiện. + Dựng một hình để chứng minh M có tính chất T sao cho M thoả mãn n − 1 điều kiện trong tính chất T và chứng minh M có thoả mãn điều kiện còn lại. – Kết luận:Tập hợp điểm M là hình H. Nêu rõ hình dạng và cách xác định hình H. Chú ý: – Việc tìm ra mối liên hệ giữa các yếu tố cố định, không đổi với yếu tố chuyển động là khâu chủ yếu giúp ta giải quyết bài toán tập hợp điểm. – Nếu bài toán chỉ hỏi “Điểm M chuyển động trên đường nào?” thì ta chỉ trình bày phần thuận, phàn giới hạn và phàn kết luận mà không cần không chứng minh phần đảo. – Giải bài toán tập hợp điểm thường là tìm cách đưa về tập hợp điểm cơ bản đã học. – Để khỏi vẽ hình lại khi chứng minh phần đảo tên các điểm trong phần đảo nên giữ nguyên như phần thuận. 3. Một số tập hợp điểm cơ bản. a) Tập hợp điểm là đường trung trực hoặc một phần đường trung trực. Định lí: Tập hợp các điểm M cách đều hai điểm phân biệt A, B cố định là đường trung trực d của đoạn thẳng AB. b) Tập hợp điểm là tia phân giác. Định lí: Tập hợp các điểm nằm trong góc xOy (khác góc bẹt) và cách đều hai cạnhcủa góc là tia phân giác của góc đó. Hệ quả: Tập hợp các điểm M cách đều hai đường thẳngcắt nhau xOx’ và yOy’ là bốn tia phân giác của bốn góc tạo thành, bốn tia này tạo thành hai đường thẳng vuông góc với nhau tại giao điểm O của hai đường thẳng đó. c) Tập hợp điểm là đường thẳng song song. Định lý 1: Tập hợp các điểm M cách đường thẳng h cho trước một khoảng bằng a không đổi là hai đường thẳng song song với đường thắng đã cho và cách đường thẳng đó bằng a. Định lí 2: Tập hợp các điểm cách đều hai đường thẳng song song cho trước là một đường thẳng song song và nằm cách đều hai đường thẳng đã cho. d) Tập hợp điểm là đường tròn, một phần của đường tròn, cung chứa góc. + Tập hợp các điểm M cách điểm O cho trước một khoảng không đổi r là đường tròn tâm O bán kính r. + Tập hợp các điểm nhìn đoạn thẳng cố định AB dưới góc 900 là đường tròn đường kính AB. + Tập hợp các điểm M tạo thành với hai mút của đoạn thẳng AB cho trước một góc AMB có số đo không đổi là α là hai cung tròn đối xứng nhau qua AB. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI
Các bài toán về tứ giác và đa giác đặc sắc
Tài liệu gồm 82 trang, tuyển chọn các bài toán về tứ giác và đa giác đặc sắc hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC VỀ TỨ GIÁC 1. Tứ giác. + Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC, CD, DA, trong đó bất kì hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng. + Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tam giác. + Tổng các góc của một tứ giác bằng 360 độ. + Góc kề bù với một góc của tứ giác gọi là góc ngoài của tứ giác. Tổng các góc ngoài của một tứ giác bằng 360 độ. 2. Hình thang. + Hình thang là tứ giác có hai cạnh đối song song. + Hình thang vuông là hình thang có một góc vuông. + Nếu một hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau, hai cạnh đáy bằng nhau. + Nếu một hình thang có hai cạnh đáy bằng nhau thì hai cạnh bên song song và bằng nhau. 3. Hình bình hành. + Hình bình hành là tứ giác có các cặp cạnh đối song song. Trong hình bình hành: + Các cạnh đối bằng nhau. + Các góc đối bằng nhau. + Hai đường chéo cắt nhau tại trung điểm của mỗi đường. 4. Hình chữ nhật. + Hình chữ nhật là tứ giác có bốn góc vuông. + Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường. 5. Hình thoi. + Hình thoi là một tứ giác có bốn cạnh bằng nhau. Trong hình thoi: + Hai đường chéo vuông góc với nhau. + Hai đường chéo là các đường phân giác của các góc của hình thoi. 6. Hình vuông. + Hình vuông là tứ giác có bốn góc vuông và có bốn cạnh bằng nhau. + Hình vuông có tất cả các tính chất của hình chữ nhật và hình thoi. 7. Đa giác. + Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của đa giác đó. + Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau. + Tổng các góc của đa giác n cạnh bằng (n – 2).180. + Mỗi góc của đa giác đều n cạnh bằng (n – 2).180/n. + Số các đường chéo của đa giác n cạnh bằng n(n – 3)/2. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI
Các bài toán về tam giác đặc sắc
Tài liệu gồm 90 trang, tuyển chọn các bài toán về tam giác đặc sắc hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. HỆ THỐNG KIẾN THỨC CƠ BẢN VỀ TAM GIÁC 1. Tổng ba góc trong một tam giác. 2. Hai tam giác bằng nhau. a. Hai tam giác bằng nhau. b. Các trường hợp bằng nhau của hai tam giác. c. Các trường hợp bằng nhau của tam giác vuông. 3. Quan hệ giữa các yếu tố trong tam giác. a. Quan hệ giữa góc và cạnh đối diện trong một tam giác. b. Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu. c. Quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác. 4. Các đường đồng quy trong tam giác. a. Ba đường trung tuyến của tam giác. b. Ba đường phân giác của tam giác. c. Ba đường trung trực của tam giác. d. Ba đường cao của tam giác. 5. Tam giác đồng dạng. a. Định lí Talets trong tam giác. b. Tính chất đường phân giác trong tam giác. c. Tam giác đồng dạng. 6. Hệ thức lượng trong tam giác. a. Hệ thức liên hệ giữa cạnh, đường cao và hình chiếu trong tam giác vuông. b. Tỉ số lượng giác của góc nhọn. c. Tỉ số lượng giác của hai góc phụ nhau. d. Một số hệ thức lượng giác. e. Liên hệ giữa cạnh và góc trong tam giác vuông. II. MỘT SỐ KIẾN THỨC NÂNG CAO THƯỜNG ÁP DỤNG 1. Các công thức về đường cao, đường trung tuyến, đường phân giác trong tam giác. 2. Các công thức về lượng giác trong tam giác. 3. Các định lí hình học nổi tiếng trong tam giác. III. CÁC THÍ DỤ MINH HỌA IV. BÀI TẬP TỰ LUYỆN V. HƯỚNG DẪN GIẢI
Một số bài toán về đường tròn
Tài liệu gồm 116 trang, tuyển chọn một số bài toán về đường tròn hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. A. MỘT SỐ KIẾN THỨC CẦN NHỚ I. Sự xác định đường tròn. 1. Định nghĩa. 2. Vị trí tương đối của một điểm đối với một đường tròn. 3. Cách xác định đường tròn. 4. Tính chất đối xứng của đường tròn. II. Liên hệ giữa đường kính và dây cung. 1. So sánh độ dài của đường kính và dây. 2. Quan hệ vuông góc giữa đường kính và dây. 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây. III. Ví trí tương đối của đường thẳng và đường tròn. 1. Vị trí tương đối của đường thẳng và đường tròn. 2. Dấu hiệu nhận biết tiếp tuyến của đường tròn. 3. Tính chất của hai tiếp tuyến cắt nhau. 4. Đường tròn nội tiếp tam giác. 5. Đường tròn bàng tiếp tam giác. IV. Vị trí tương đối của hai đường tròn. 1. Tính chất đường nối tâm. 2. Vị trí tương đối của hai đường tròn. 3. Tiếp tuyến chung của hai đường tròn. V. Góc với đường tròn. 1. Góc ở tâm. 2. Góc nội tiếp. 3. Góc tạo bởi tia tiếp tuyến với dây cung. 4. Góc có đỉnh ở bên trong đường tròn và góc có đỉnh ở bên ngoài đừng tròn. 5. Tứ giác nội tiếp. 6. Đường tròn ngoại tiếp, đường tròn nội tiếp. 7. Độ dài đường tròn, cung tròn. Diện tích hình tròn, hình quạt tròn. VI. Một số kiến thức bổ sung. 1. Một số tính chất về tiếp tuyến. 2. Một số dấu hiệu nhận biết tứ giác nội tiếp. 3. Một số định lí hình học nổi tiếng. B. MỘT SỐ VÍ DỤ MINH HỌA C. BÀI TẬP TỰ LUYỆN D. HƯỚNG DẪN GIẢI