Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Hà Tĩnh

Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Hà Tĩnh Bản PDF Đề thi chọn học sinh giỏi tỉnh Toán lớp 12 THPT năm 2018 – 2019 sở GD và ĐT Hà Tĩnh được biên soạn theo hình thức tự luận với 4 bài toán, thí sinh làm bài trong 180 phút, kỳ thi được diễn ra vào ngày 03 tháng 12 năm 2018, đề nhằm tuyển chọn các em học sinh giỏi môn Toán ở các trường THPT tại Hà Tĩnh để tiếp tục bồi dưỡng, tạo điều kiện để các em tham dự kỳ thi HSG Toán cấp quốc gia. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2018 – 2019 sở GD và ĐT Hà Tĩnh : + Có 10 đội tuyển bóng đá quốc gia ở khu vực Đông Nam Á tham gia thi đấu giải AFF Suzuki Cup 2018 trong đó có đội tuyển Việt Nam và đội tuyển Thái Lan, các đội được chia làm hai bảng, ký hiệu là bảng A và bảng B, mỗi bảng có 5 đội. Việc chia bảng được thực hiện bằng cách bốc thăm ngẫu nhiên. Tính xác suất để hai đội tuyển Việt Nam và Thái Lan nằm ở hai bảng đấu khác nhau. [ads] + Trên sa mạc có một khu đất hình chữ nhật ABCD có chiều dài AB = 70km, chiều rộng AID = 10km. Vận tốc trung bình của xe máy trên khu đất này là 20km/h, riêng đi trên cạnh CD thì vận tốc là 40km/h. Một người đi xe máy xuất phát từ A lúc 8 giờ sáng và muốn đến B sau 3 giờ nữa. Hỏi người đó có thể đến B kịp thời gian không? Xây dựng phương án di chuyển trên khu đất từ A đến B để hết ít thời gian nhất. + Một cái phễu có dạng hình nón chiều cao của phễu là h. Người ta đổ một lượng nước vào phễu sao cho chiều cao của lượng nước trong phễu là h1 = 3√7/2.h (hình H1). Ta bịt kín miệng phễu rồi lật ngược phễu lên (hình H2), gọi chiều cao của cột nước trong phễu ở hình H2 là k. Tính k/h.

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển HSG lớp 12 môn Toán năm 2020 2021 sở GD ĐT Phú Thọ (Ngày 1)
Nội dung Đề chọn đội tuyển HSG lớp 12 môn Toán năm 2020 2021 sở GD ĐT Phú Thọ (Ngày 1) Bản PDF Thứ Năm ngày 24 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Phú Thọ tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia lớp 12 THPT môn Toán năm học 2020 – 2021 ngày thi thứ nhất. Đề chọn đội tuyển HSG Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Phú Thọ (Ngày 1) gồm có 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề chọn đội tuyển HSG Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Phú Thọ (Ngày 1) : + Giả sử O, I lần lượt là tâm đường tròn ngoại tiếp, nội tiếp tam giác ABC với bán kính R, r tương ứng. Gọi P là điểm chính giữa cung BAC, QP là đường kính của (O), D là giao điểm của PI và BC, F là giao điểm của đường tròn ngoại tiếp tam giác AID với đường thẳng PA. Lấy E trên tia DP sao cho DE = DQ. a) Chứng minh rằng góc IDF = 90 độ. b) Giả sử AEF = APE, chứng minh rằng sin2 BAC = 2r/R. + Cho dãy số thực dương (an) (n >=1) thỏa mãn điều kiện: a1 + a2 + … + an + an+1 + an+2 < 4an+1. Chứng minh rằng a1 + a2 + … + an =< an+1 với mọi n thuộc N*. + Trên mặt phẳng tọa độ Oxy, cho S là tập hợp các điểm (x;y) thỏa mãn đồng thời hai điều kiện: i) x và y thuộc N. ii) 0 ≤ y ≤ x ≤ 2020. a) Tính số phần tử của S. b) Hỏi có bao nhiêu tập con A gồm 2020 phần tử của S sao cho A không chứa hai điểm (x1;y1) và (x2;y2) thỏa mãn: (x1 – x2)(y1 – y2) = 0?
Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD ĐT Khánh Hòa (Vòng 1)
Nội dung Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD ĐT Khánh Hòa (Vòng 1) Bản PDF Thứ Tư ngày 23 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi chọn đội tuyển thi học sinh giỏi THPT cấp Quốc gia năm 2021 môn Toán (vòng 1). Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD&ĐT Khánh Hòa (Vòng 1) được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD&ĐT Khánh Hòa (Vòng 1) : + Cho tam giác nhọn không cân ABC có trực tâm H và nội tiếp đường tròn (O). Gọi E, F lần lượt là chân đường cao hạ từ B, C của tam giác ABC. M là giao điểm của đường tròn ngoại tiếp tam giác AEF với đường tròn (O) (M không trùng A). Đường thẳng BH cắt đường tròn (O) tại D (D không trùng B). I là trung điểm BC. a) Chứng minh rằng ba đường thẳng AM, EF, BC đồng quy tại một điểm. b) Đường tròn ngoại tiếp tam giác HEI cắt BC tại N (N không trùng I). Đường  thẳng EN cắt đường thẳng qua H và song song với BC tại K. Chứng minh rằng bốn điểm M, H, K, D cùng thuộc một đường tròn. + Cho n là một số nguyên dương, xét tập hợp S = {1,2,3,…,n}. Gọi p, q lần lượt là số tập con khác rỗng của S và có số phần tử là chẵn, lẻ. Chứng minh rằng p – q =  -1. + Cho m, n là các số nguyên dương và một bảng hình chữ nhật kẻ ô vuông cóm hàng và n cột (nghĩa là bảng gồm m x n ô vuông). Xét các tập hợp T khác  rỗng gồm một số các ô vuông thuộc bảng trên sao cho mỗi hàng và mỗi cột của bảng đều có chứa ít nhất một ô vuông của T. Gọi p là số các tập hợp T có số phần tử là số chẵn và q là số các tập hợp T có số phần tử là số lẻ. Chứng minh rằng p – q =  (-1)m+n+1.
Đề chọn đội tuyển HSG lớp 12 môn Toán năm học 2020 2021 sở GD ĐT Quảng Bình
Nội dung Đề chọn đội tuyển HSG lớp 12 môn Toán năm học 2020 2021 sở GD ĐT Quảng Bình Bản PDF Thứ Hai ngày 21 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ kiểm tra chọn đội tuyển chính thức dự thi học sinh giỏi môn Toán cấp Quốc gia lớp 12 THPT năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Quảng Bình : + Trên các cạnh AB, AC của tam giác ABC lần lượt lấy hai điểm A, B. Hai đoạn thẳng BB1 và CC1 cắt nhau tại X và hai đoạn thẳng B1C1 và AX cắt nhau tại P. Đường tròn ngoại tiếp các tam giác BXC1, CXB1 cắt nhau tại điểm thứ hai Y và cắt cạnh BC lần lượt tại D và E. a) Giả sử B1C1 // BC và gọi H, K lần lượt là hình chiếu vuông góc của Y lên AB và AC. Chứng minh rằng: YH/AB = YK/AC. b) Giả sử B1E và C1D cắt nhau tại Q và đường thẳng B1D cắt đường thẳng C1E tại R. Chứng minh ba điểm P, Q và R thẳng hàng. + Cho tập hợp X có 2020 phần tử. Bạn An chia tập X thành 2 tập hợp A và B thỏa mãn |A| = |B|; A ∩ B = Ø, bằng k cách khác nhau. Tìm giá trị nhỏ nhất của k sao cho với 2 phần tử bất kỳ của X, luôn có ít nhất 1 cách trong k cách chia mà bạn An chia chúng vào 2 tập hợp khác nhau. + Gọi n là số nguyên dương thỏa mãn điều kiện 2n – 5 | 3(n! + 1). a) Giả sử tồn tại n > 4 thỏa mãn điều kiện trên. Chứng minh rằng 2n  – 5 là số nguyên tố. b) Tìm tất cả các số nguyên dương n thỏa mãn điều kiện trên.
Đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD ĐT Đồng Tháp
Nội dung Đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD ĐT Đồng Tháp Bản PDF Ngày 28 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Tháp tổ chức kỳ thi chọn đội tuyển học sinh giỏi Toán dự thi cấp Quốc gia năm 2021. Đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD&ĐT Đồng Tháp gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD&ĐT Đồng Tháp : + Xét số T = 3^n – 2^n, trong đó n là số nguyên dương, n >= 2. Chứng minh rằng: a) Không tồn tại n để T là bình phương của một số nguyên tố. b) Nếu T là lập phương của một số nguyên tố thì n là một số nguyên tố. + Với mỗi m thuộc N* ta kí hiệu: a(2m) = (m!)^2, a(2m + 1) = (m!).((m + 1)!). Cho đa thức p(x) hệ số nguyên, có bậc lớn hơn hoặc bằng k (k thuộc N*) và có ít nhất k nghiệm nguyên phân biệt. Xét số nguyên n (n khác 0) sao cho đa thức q(x) = p(x) – n có ít nhất một nghiệm nguyên. Chứng minh rằng |n| >= a(k). + Cho tam giác ABC, đường tròn nội tiếp (I) tiếp xúc với các cạnh BC, CA, AB tại D, E, F. 1. Gọi S là giao điểm của EF với BC. Chứng minh SI vuông góc với AD. 2. Đường thẳng d thay đổi, đi qua S và cắt đường tròn (I) tại hai điểm phân biệt M, N. Các tiếp tuyến tại M, N của (I) cắt nhau tại T. Chứng minh T thuộc một đường thẳng cố định. 3. Gọi K là giao điểm của ME và NF, G là giao điểm của MC và NB. Chứng minh K và G cùng thuộc đường thẳng AD.