Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm tổ hợp và xác suất có lời giải chi tiết - Nguyễn Phú Khánh, Huỳnh Đức Khánh

Tài liệu gồm 55 trang tuyển tập các bài toán có lời giải chi tiết trong chủ đề tổ hợp và xác suất (Chương 2, Đại số và Giải tích 11) Bài 01. QUY TẮC ĐẾM 1. Quy tắc cộng : Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kỳ cách nào của hành động thứ nhất thì công việc đó có m +n cách thực hiện. 2. Quy tắc nhân : Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m×n cách hoàn thành công việc. + Vấn đề 1. QUY TẮC CỘNG + Vấn đề 2. QUY TẮC CỘNG Bài 02. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP 1. Hoán vị : Cho tập A gồm n phần tử (n ≥ 1). Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó. 2. Chỉnh hợp : Cho tập hợp A gồm n phần tử (n ≥ 1). Kết quả của việc lấy k (1 ≤ k ≤ n) phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho. 3. Tổ hợp : Giả sử tập A có n phần tử (n ≥ 1). Mỗi tập con gồm k (1 ≤ k ≤ n) phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho. [ads] + Vấn đề 1. HOÁN VỊ + Vấn đề 2. CHỈNH HỢP + Vấn đề 3. TỔ HỢP + Vấn đề 4. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH Bài 03. NHỊ THỨC NIU-TƠN Bài 04. BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ 1. Phép thử và không gian mẫu : Phép thử ngẫu nhiên (gọi tắt là phép thử) là một thí nghiệm hay một hành động mà: • Kết quả của nó không đoán trước được. • Có thể xác định được tập hợp tất cả các kết quả có thể xảy ra của phép thử đó. Tập hợp mọi kết quả của một phép thử T được gọi là không gian mẫu của T và được kí hiệu là Ω. Số phần tử của không gian mẫu được kí hiệu là n(Ω) hay Ω. 2. Biến cố : Biến cố A liên quan đến phép thử T là biến cố mà việc xảy ra hay không xảy ra của A tùy thuộc vào kết quả của T. Mỗi kết quả của phép thử T làm cho A xảy ra được gọi là một kết quả thuận lợi cho A. Tập hợp các kết quả thuận lợi cho A được kí hiệu là ΩA 3. Xác suất : Giả sử phép thử T có không gian mẫu Ω là một tập hữu hạn và các kết quả của T là đồng khả năng. Nếu A là một biến cố liên quan với phép thử T và ΩA là một tập hợp các kết quả thuận lợi cho A thì xác suất của A là một số, kí hiệu là P(A), được xác định bởi công thức: P(A) = ΩA/Ω

Nguồn: toanmath.com

Đọc Sách

Bài tập VD - VDC giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục
Tài liệu gồm 42 trang, được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC, tuyển tập 61 bài tập VD – VDC giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục có đáp án và lời giải chi tiết, giúp học sinh lớp 11 rèn luyện khi học chương trình Đại số và Giải tích 11 (Toán 11) chương 4. Dạng toán 1. Giới hạn hữu hạn của dãy số. Dạng toán 2. Tổng của cấp số nhận lùi vô hạn. Dạng toán 3. Giới hạn vô cực của dãy số. Dạng toán 4. Giới hạn hữu hạn của hàm số tại một điểm. Dạng toán 5. Giới hạn hữu hạn của hàm số tại vô cực. Dạng toán 6. Giới hạn vô cực của hàm số. Dạng toán 7. Xét tính liên tục của hàm số tại một điểm. Dạng toán 8. Xét tính liên tục của hàm số trên tập xác định. Dạng toán 9. Ứng dụng tính liên tục của hàm số trong giải phương trình.
Các dạng toán và bài tập giới hạn và liên tục - Nguyễn Trọng
Tài liệu gồm 154 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, tóm tắt lý thuyết, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề giới hạn và liên tục, giúp học sinh lớp 11 tham khảo khi học sinh trình Đại số và Giải tích 11 chương 4. BÀI 1 . GIỚI HẠN CỦA DÃY SỐ. A. TÓM TẮT LÝ THUYẾT. B. DẠNG TOÁN VÀ BÀI TẬP. Dạng 1. Tính giới hạn L = lim P(n)/Q(n) với P(n), Q(n) là các đa thức. Dạng 2. Tính giới hạn dạng L = lim P(n)/Q(n) với P(n), Q(n) là các hàm mũ an. Dạng 3. Tính giới hạn của dãy số chứa căn thức. C. BÀI TẬP RÈN LUYỆN. BÀI 2 . GIỚI HẠN CỦA HÀM SỐ. A. TÓM TẮT LÝ THUYẾT. B. DẠNG TOÁN VÀ BÀI TẬP. Dạng 1. Tính giới hạn vô định dạng 0/0, trong đó tử thức và mẫu thức là các đa thức. Dạng 2. Tính giới hạn vô định dạng 0/0, trong đó tử thức và mẫu thức có chứa căn thức. Dạng 3. Giới hạn của hàm số khi x tiến đến vô cực. Dạng 4. Giới hạn một bên x tiến đến x0+ hoặc x tiến đến x0-. Dạng 5. Giới hạn của hàm số lượng giác. C. BÀI TẬP RÈN LUYỆN. BÀI 3 . HÀM SỐ LIÊN TỤC. A. TÓM TẮT LÝ THUYẾT. B. DẠNG TOÁN VÀ BÀI TẬP. Dạng 1. Xét tính liên tục của hàm số tại một điểm. Dạng 2. Xét tính liên tục của hàm số trên tập xác định. Dạng 3. Chứng minh phương trình có nghiệm. C. BÀI TẬP RÈN LUYỆN. BÀI 4 . ÔN TẬP CHƯƠNG IV.
Các dạng toán và bài tập giới hạn có lời giải chi tiết - Nguyễn Bảo Vương
Tài liệu gồm 140 trang trình bày các dạng toán trong chương trình Đại số và Giải tích 11 chương 4 – Giới hạn, với các chủ đề: giới hạn dãy số, giới hạn hàm số và hàm số liên tục, sau mỗi phần đều có bài tập trắc nghiệm và tự luận giới hạn có lời giải chi tiết. Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương. 1. GIỚI HẠN DÃY SỐ Vấn đề 1 . Tìm giới hạn bằng định nghĩa Phương pháp: + Để chứng minh lim un = 0 ta chứng minh với mọi số a > 0 nhỏ tùy ý luôn tồn tại một số na sao cho |un| < a với mọi n > na. + Để chứng minh lim un = 1 ta chứng minh lim(un – 1) = 0. + Để chứng minh lim un = +∞ ta chứng minh với mọi số M > 0 lớn tùy ý, luôn tồn tại số tự nhiên nM sao cho un > M với mọi n > nM. + Để chứng minh lim un = -∞ ta chứng minh lim (-un) = +∞. + Một dãy số nếu có giới hạn thì giới hạn đó là duy nhất. Vấn đề 2 . Tìm giới hạn của dãy số dựa vào các định lý và các giới hạn cơ bản Phương pháp: Sử dụng các định lí về giới hạn, biến đổi đưa về các giới hạn cơ bản. + Khi tìm lim f(n)/g(n) ta thường chia cả tử và mẫu cho n^k, trong đó k là bậc lớn nhất của tử và mẫu. + Khi tìm lim [(f(n))^1/k – (g(n))^1/m] trong đó lim f(n) = lim g(n) = +∞ ta thường tách và sử dụng phương pháp nhân lượng liên hợp. 2. GIỚI HẠN CỦA HÀM SỐ Vấn đề 1 . Tìm giới hạn bằng định nghĩa Vấn đề 2 . Tìm giới hạn của hàm số + Bài toán 01: Tìm lim f(x) khi x → x0 biết xác định tại x0 + Bài toán 02. Tìm lim f(x)/g(x) khi x → x0 trong đó f(x0) = g(x0) = 0 + Bài toán 03: Tìm lim f(x)/g(x) khi x → ±∞, trong đó f(x), g(x) → ∞, dạng này ta còn gọi là dạng vô định ∞/∞ + Bài toán 04: Dạng vô định: ∞ – ∞ và 0.∞ + Bài toán 05: Dạng vô định các hàm lượng giác [ads] 3. HÀM SỐ LIÊN TỤC Vấn đề 1 . Xét tính liên tục của hàm số tại một điểm Phương pháp: + Tìm giới hạn của hàm số y = f(x) khi x → x0 và tính f(x0) + Nếu tồn tại lim f(x) khi x → x0 thì ta so sánh với lim f(x) khi x → x0 với f(x0) Vấn đề 2 . Xét tính liên tục của hàm số trên một tập Phương pháp: Sử dụng các định lí về tính liên tục của hàm đa thức, lương giác, phân thức hữu tỉ … Nếu hàm số cho dưới dạng nhiều công thức thì ta xét tính liên tục trên mỗi khoảng đã chia và tại các điểm chia của các khoảng đó. Vấn đề 3 . Chứng minh phương trình có nghiệm Phương pháp: + Để chứng minh phương trình f(x) = 0 có ít nhất một nghiệm trên D, ta chứng minh hàm số y = f(x) liên tục trên D và có hai số a, b ∈ D sao cho f(a).f(b) < 0. + Để chứng minh phương trình f(x) = 0 có k nghiệm trên D, ta chứng minh hàm số y = f(x) liên tục trên D và tồn tại k khoảng rời nhau (ai; ai+1) (i = 1, 2, …, k) nằm trong D sao cho f(ai).f(ai+1) < 0.
Bài tập trắc nghiệm giới hạn có lời giải chi tiết - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 58 trang tuyển chọn và giải chi tiết các bài tập trắc nghiệm giới hạn trong chương trình Đại số và Giải tích 11 chương 4, tài liệu bao gồm nhiều bài tập thuộc mức độ vận dụng được chia thành nhiều dạng toán khác nhau. Tài liệu được biên soạn bởi thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh. Nội dung tài liệu : Bài 01. Giới hạn của dãy số + Vấn đề 1. Dãy số dạng phân thức + Vấn đề 2. Dãy số chứa căn thức + Vấn đề 3. Dãy số chứa hàm lũy thừa + Vấn đề 4. Tổng của cấp số nhân lùi vô hạn Bài 02. Giới hạn của hàm số + Vấn đề 1. Dãy số có giới hạn hữu hạn + Vấn đề 2. Giới hạn một bên + Vấn đề 3. Giới hạn tại vô cực + Vấn đề 4. Dạng vô định 0/0 + Vấn đề 5. Dạng vô định ∞/∞ + Vấn đề 6. Dạng vô định ∞ – ∞ + Vấn đề 7. Dạng vô định 0.∞ [ads] Bài 03. Hàm số liên tục + Vấn đề 1. Xét tính liên tục của hàm số + Vấn đề 2. Hàm số liên tục tại một điểm + Vấn đề 3. Hàm số liên tục trên một khoảng + Vấn đề 4. Số nghiệm của phương trình trên một khoảng Xem thêm :  Bài tập trắc nghiệm tổ hợp và xác suất có lời giải chi tiết – Nguyễn Phú Khánh, Huỳnh Đức Khánh (Đại số và Giải tích 11 chương 2)