Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Ninh Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình; đề thi được biên soạn theo cấu trúc 20% trắc nghiệm kết hợp 80% tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Ninh Bình : + Cho hàm số y = ax2 (a ≠ 0) có đồ thị là parabol (P). 1) Tìm a biết parabol (P) đi qua điểm A(2;-2). 2) Vẽ đồ thị của hàm số y = ax2 với a vừa tìm được ở ý trên. + Giải bài toán bằng cách lập hệ phương trình: Để chuẩn bị cho năm học mới, học sinh hai lớp 9A, 9B ủng hộ thư viện của nhà trường được 738 quyển sách, gồm hai loại: sách giáo khoa và sách tham khảo. Trong đó, mỗi học sinh lớp 9A ủng hộ 6 quyển sách giáo khoa và 3 quyển sách tham khảo; mỗi học sinh lớp 9B ủng hộ 5 quyển sách giáo khoa và 4 quyển sách tham khảo. Biết số sách giáo khoa nhiều hơn số sách tham khảo là 166 quyển. Tính số học sinh lớp 9A, 9B? + Cho nửa đường tròn tâm O, đường kính AB. C là một điểm nằm giữa O và A. Đường thẳng vuông góc với AB tại C, cắt nửa đường tròn (O) tại I. Lấy điểm K bất kì nằm trên đoạn thẳng CI (K khác C, K khác I), tia AK cắt nửa đường tròn (O) tại M, tia BM cắt tia CI tại D. 1) Chứng minh tứ giác ACMD nội tiếp. 2) Chứng minh: CK.CD = CA.CB. 3) Gọi N là giao điểm của AD và nửa đường tròn (O). Chứng minh ba điểm B, K, N thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 2 Toán 9 năm 2021 - 2022 trường Tạ Quang Bửu - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng giữa học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS và THPT Tạ Quang Bửu, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 10 tháng 03 năm 2022. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2021 – 2022 trường Tạ Quang Bửu – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Một cửa hàng có tổng cộng 28 chiếc tivi và tủ lạnh. Giá mỗi cái tủ lạnh là 15 triệu đồng, mỗi cái tivi là 30 triệu đồng. Nếu bán hết 28 cái tivi và tủ lạnh này chủ cửa hàng sẽ thu được 720 triệu đồng. Hỏi cửa hàng có bao nhiêu cái tivi và tủ lạnh? + Cho nửa đường tròn (O), đường kính AB. Lấy hai điểm C, M bất kỳ thuộc nửa đường tròn sao cho AC = CM (AC và CM khác MB). Gọi D là giao điểm của AC và BM; H là giao điểm của AM và BC. 1. Chứng minh: Tứ giác CHMD nội tiếp. 2. Chứng minh: DA.DC = DB.DM. 3. Tiếp tuyến tại A của đường tròn (O) cắt tia BC tại K. Chứng minh rằng: KD. Gọi Q là giao điểm của DH và AB. Chứng minh rằng: khi điểm C di chuyển trên nửa đường tròn sao cho AC = CM thì đường tròn ngoại tiếp CMQ luôn đi qua một điểm cố định. + Chọn đáp án đúng trong mỗi câu sau (học sinh ghi vào giấy thi phương án lựa chọn. Ví dụ: câu 1 chọn đáp án A, ghi là: 1A).