Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 8 năm 2022 - 2023 phòng GDĐT Quốc Oai - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho đa thức P(x) với hệ số nguyên thỏa mãn P(2) = 10 và P(−2) = −6. Tìm đa thức P(x) biết đa thức P(x) chia cho đa thức x2 – 4 được thương là (2x + 6) và còn dư. + Một xe đạp, một xe máy và một ô tô cùng đi từ A đến B, khởi hành lần lượt lúc 5 giờ, 6 giờ, 7 giờ cùng ngày và vận tốc theo thứ tự là 15 km/h, 35 km/h, 55 km/h. Hỏi lúc mấy giờ thì ô tô cách đều xe đạp và xe máy? + Cho hình chữ nhật ABCD, AC cắt BD tại O, trên đoạn OD lấy điểm P bất kỳ. Gọi M là điểm đối xứng với C qua P. a/ Tứ giác AMDB là hình gì? b/ Gọi E, F lần lượt là hình chiếu của M trên AD, AB. Chứng minh: EF // AC và ba điểm E, F, P thẳng hàng. c/ Chứng minh: Tỉ số các cạnh của hình chữ nhật AEMF không phụ thuộc vào vị trí của điểm P trên OD. d/ Giả sử CP vuông góc BD, CP = 2,4 cm và PD/PB = 9/16. Tính các cạnh của hình chữ nhật ABCD.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Ninh Phước - Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi huyện Toán 8 năm học 2018 – 2019 phòng GD&ĐT huyện Ninh Phước, tỉnh Ninh Thuận; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi học sinh giỏi huyện Toán 8 năm 2018 – 2019 phòng GD&ĐT Ninh Phước – Ninh Thuận : + Cho biểu thức A = (x – 1)(x + 2)(x + 3)(x + 6). Tìm giá trị của x để biểu thức A đạt giá trị nhỏ nhất. + Cho hình bình hành ABCD có DC = 2AD, từ trung điểm I của cạnh CD vẽ HI vuông góc với AB (H thuộc AB). Gọi E là giao điểm của AI và DH. Chứng minh rằng. + Cho tam giác ABC vuông tại A có AD là phân giác,biết BD = 14 3 17 cm, CD = 3 9 17 cm. Tính độ dài các cạnh góc vuông của tam giác.
Đề thi HSG Toán 8 năm 2018 - 2019 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Tuyển tập 100 đề thi học sinh giỏi môn Toán 8 - Hồ Khắc Vũ
Tài liệu gồm 89 trang tuyển tập 100 đề thi chọn học sinh giỏi môn Toán lớp 8 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi học sinh giỏi môn Toán 8 trường THCS Bãi Sậy - Hưng Yên
Đề thi học sinh giỏi môn Toán 8 trường THCS Bãi Sậy – Hưng Yên gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 60 phút. Trích dẫn đề thi : + Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm D, kẻ DN vuông góc với AC và DM vuông góc AB. Kẻ đường cao AH của tam giác ABC. a. Tứ giác AMDN là hình gì? Vì sao? b. Tìm vị trí điểm D trên cạnh BC thì MN có độ dài nhỏ nhất? Vẽ hình đúng với vị trí của điểm D đó? c. Tính số đo góc MHN? [ads] + Chứng minh rằng biểu thức (x – 1 )(2x^2 + x + 1) – ( x – 2)(2x^2 + 3x + 6) có giá trị không phụ thuộc vào các biến? + Tìm các giá trị x; y nguyên dương sao cho 9xy + 3x + 3y = 51 + Tìm giá trị nhỏ nhất của đa thức N = x^2 + 5y^2 – 4xy + 6x – 14y + 15