Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 10 năm 2022 - 2023 cụm các trường THPT - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic chọn học sinh giỏi môn Toán 10 cấp cụm năm học 2022 – 2023 cụm các trường THPT trực thuộc sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề thi Olympic Toán 10 năm 2022 – 2023 cụm các trường THPT – Hà Nội : + Cho Parabol (P): y = x2 – 2x – 1. 1) Lập bảng biến thiên và vẽ đồ thị (P). 2) Tìm giá trị thực của m để đường thẳng d: y = mx + 1 cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thoả mãn |x1 – x2| nhỏ nhất? + Một trang trại cần thuê xe vận chuyển 450 con lợn và 35 tấn cám. Cửa hàng cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi trang trại phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất? + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, BD = 26 và điểm A(2;-1). Biết điểm C có hoành độ dương và nằm trên đường thẳng d: x – y + 1 = 0. 1) Viết phương trình đường thẳng AC. 2) Tìm tọa độ điểm B biết B có hoành độ lớn hơn 4.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân Cầu Giấy Thường Tín - Hà Nội
Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội nhằm giao lưu đội tuyển học sinh giỏi môn Toán khối 10 của ba trường: trường THPT Thanh Xuân (Hà Nội), trường THPT Cầu Giấy (Hà Nội), trường THPT Thường Tín (Hà Nội), đề thi được biên soạn theo dạng tự luận với 05 bài toán, học sinh làm bài trong 120 phút (không kể thời gian giám thị coi thi phát đề), lời giải chi tiết của đề thi được biên soạn bởi tập thể quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán. Trích dẫn đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD. Gọi H là hình chiếu của A lên BD; I là trung điểm của BH. Biết đỉnh A(2;1), phương trình đường chéo BD là: x + 5y – 19 = 0, điểm I(42/13;41/13). a) Viết phương trình tham số đường thẳng AH. Tìm tọa độ điểm H? b) Viết phương trình tổng quát cạnh AD. [ads] + Cho tam giác ABC, đặt a = BC, b = AC, c = AB. Gọi M là điểm tùy ý. a) Tìm giá trị nhỏ nhất của biểu thức P = MA^2 + MB^2 + MC^2 theo a, b, c. b) Giả sử a = √6 cm, b = 2 cm, c = (1 + √3) cm. Tính số đo góc nhỏ nhất của tam giác ABC và diện tích tam giác ABC. + Cho hàm số y = x^2 – 2x + 2. a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số. b) Tìm m để phương trình -x^2 + 2x – 2 – m = 0 có hai nghiệm x1 và x2 thỏa mãn: x1 < -1 < 3 < x2.
Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 - 2018 trường THPT Thanh Miện - Hải Dương
Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 – 2018 trường THPT Thanh Miện – Hải Dương gồm 5 bài toán tự luận,thời gian làm bài 180 phút, đề thi HSG có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD, điểm M (-2; 0) là trung điểm của cạnh AB, điểm H(1; -1) là hình chiếu của B trên AD và điểm G(7/3; 3) là trọng tâm tam giác BCD. Đường thẳng HM cắt BC tại E, đường thẳng HG cắt BC tại F. Tìm tọa độ các điểm E, F và B. [ads] + Cho tam giác ABC có trọng tâm là G. Hai điểm D và E được xác định bởi các hệ thức vectơ vtAD = 2.vtAB; vtAE = 2/5.vtAC. Chứng minh rằng: D, E, G thẳng hàng. + Gọi H là trực tâm tam giác ABC, M là trung điểm của BC. Chứng minh rằng vtMH.vtMA = 1/4.BC^2.